22 research outputs found

    HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim

    No full text
    Depletion of CD4(+) T cells is the hallmark of HIV infection and AIDS progression. In addition to the direct killing of the viral-infected cells, HIV infection also leads to increased apoptosis of predominantly uninfected bystander cells. This is mediated in part through the HIV-1 Tat protein, which is secreted by the infected cells and taken up by uninfected cells. Using an affinity-purification approach, a specific and direct interaction of Tat with tubulin and polymerized microtubules has been detected. This interaction does not affect the secretion and uptake of Tat, but is critical for Tat to induce apoptosis. Tat binds tubulin/microtubules through a four-amino-acid subdomain of its conserved core region, leading to the alteration of microtubule dynamics and activation of a mitochondria-dependent apoptotic pathway. Bim, a pro-apoptotic Bcl-2 relative and a transducer of death signals initiated by perturbation of microtubule dynamics, facilitates the Tat-induced apoptosis. Our findings reveal a strategy by which Tat induces apoptosis by targeting the microtubule network. Thus HIV-1 Tat joins a growing list of pathogen-derived proteins that target the cytoskeleton of host cells

    Nuclear Respiratory Factor 1 Plays an Essential Role in Transcriptional Initiation from the Hepatitis B Virus X Gene Promoter

    No full text
    The X gene of hepatitis B virus (HBV) is one of the major factors in HBV-induced hepatocarcinogenesis and is essential for the establishment of productive HBV replication in vivo. Recent studies have shown that the X gene product targets mitochondria and induces calcium flux, thereby activating Ca(+)-dependent signal transduction pathways. However, regulatory mechanisms of X gene expression have remained unclear. Previous studies had localized a minimal promoter activity to a 21-bp GC-rich sequence located 130 bp upstream of the X protein coding region and showed that there was a cellular protein bound to this DNA. Interestingly, the 21-bp sequence identified as an X gene minimal promoter does not contain any previously identified core promoter elements, such as a TATA box. To better understand the mechanisms of transcriptional initiation of the X gene, we set out to biochemically purify the binding protein(s) for the 21-bp DNA. We report here the identification of the X gene minimal promoter-binding activity as nuclear respiratory factor 1 (NRF1), a previously known transcription factor that activates the majority of nucleus-encoded mitochondrial genes and various housekeeping genes. Primer extension analyses of the X mRNAs show that mutations at the binding site specifically inactivate transcription from this promoter and that a dominant-negative NRF1 mutant and short interfering RNAs inhibit transcription from this promoter. Therefore, NRF1 specifically binds the 21-bp minimal promoter and positively contributes to transcription of the X gene. Simultaneous activation of the X gene and mitochondrial genes by NRF1 may allow the X protein to target mitochondria most efficiently

    Trypanosome REH1 is an RNA helicase involved with the 3′–5′ polarity of multiple gRNA-guided uridine insertion/deletion RNA editing

    No full text
    Uridine insertion/deletion RNA editing in kinetoplastid mitochondria corrects encoded frameshifts in mRNAs. The genetic information for editing resides in small guide RNAs (gRNAs), which form anchor duplexes just downstream of an editing site and mediate editing within a single editing “block.” Many mRNAs require multiple gRNAs; the observed overall 3′ to 5′ polarity of editing is determined by the formation of upstream mRNA anchors by downstream editing. Hel61, a mitochondrial DEAD-box protein, was previously shown to be involved in RNA editing, but the functional role was not clear. Here we report that down-regulation of Hel61 [renamed REH1 (RNA editing helicase 1)] expression in Trypanosoma brucei selectively affects editing mediated by two or more overlapping gRNAs but has no effect on editing within a single block. Down-regulation produces an increased abundance of the gRNA/edited mRNA duplex for the first editing block of the A6 mRNA. Recombinant REH1 has an ATP-dependent double strand RNA unwinding activity in vitro with a model gRNA-mRNA duplex. These data indicate that REH1 is involved in gRNA displacement either directly by unwinding the gRNA/edited mRNA duplex or indirectly, to allow the 5′ adjacent upstream gRNA to form an anchor duplex with the edited mRNA to initiate another block of editing. Purified tagged REH1 is associated with the RNA editing core complex by RNA linkers and a colocalization of REH1, REL1, and two kinetoplast ribosomal proteins with the kinetoplast DNA was observed by immunofluorescence, suggesting that editing, transcription, and translation may be functionally linked
    corecore