39 research outputs found

    Maximal planar scale-free Sierpinski networks with small-world effect and power-law strength-degree correlation

    Full text link
    Many real networks share three generic properties: they are scale-free, display a small-world effect, and show a power-law strength-degree correlation. In this paper, we propose a type of deterministically growing networks called Sierpinski networks, which are induced by the famous Sierpinski fractals and constructed in a simple iterative way. We derive analytical expressions for degree distribution, strength distribution, clustering coefficient, and strength-degree correlation, which agree well with the characterizations of various real-life networks. Moreover, we show that the introduced Sierpinski networks are maximal planar graphs.Comment: 6 pages, 5 figures, accepted by EP

    Degree and component size distributions in generalized uniform recursive tree

    Full text link
    We propose a generalized model for uniform recursive tree (URT) by introducing an imperfect growth process, which may generate disconnected components (clusters). The model undergoes an interesting phase transition from a singly connected network to a graph consisting of fully isolated nodes. We investigate the distributions of degree and component sizes by both theoretical predictions and numerical simulations. For the nontrivial cases, we show that the network has an exponential degree distribution while its component size distribution follows a power law, both of which are related to the imperfect growth process. We also predict the growth dynamics of the individual components. All analytical solutions are successfully contrasted with computer simulations.Comment: 4 pages, 3 figure

    Random walks on the Apollonian network with a single trap

    Full text link
    Explicit determination of the mean first-passage time (MFPT) for trapping problem on complex media is a theoretical challenge. In this paper, we study random walks on the Apollonian network with a trap fixed at a given hub node (i.e. node with the highest degree), which are simultaneously scale-free and small-world. We obtain the precise analytic expression for the MFPT that is confirmed by direct numerical calculations. In the large system size limit, the MFPT approximately grows as a power-law function of the number of nodes, with the exponent much less than 1, which is significantly different from the scaling for some regular networks or fractals, such as regular lattices, Sierpinski fractals, T-graph, and complete graphs. The Apollonian network is the most efficient configuration for transport by diffusion among all previously studied structure.Comment: Definitive version accepted for publication in EPL (Europhysics Letters

    Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices

    Full text link
    The family of Vicsek fractals is one of the most important and frequently-studied regular fractal classes, and it is of considerable interest to understand the dynamical processes on this treelike fractal family. In this paper, we investigate discrete random walks on the Vicsek fractals, with the aim to obtain the exact solutions to the global mean first-passage time (GMFPT), defined as the average of first-passage time (FPT) between two nodes over the whole family of fractals. Based on the known connections between FPTs, effective resistance, and the eigenvalues of graph Laplacian, we determine implicitly the GMFPT of the Vicsek fractals, which is corroborated by numerical results. The obtained closed-form solution shows that the GMFPT approximately grows as a power-law function with system size (number of all nodes), with the exponent lies between 1 and 2. We then provide both the upper bound and lower bound for GMFPT of general trees, and show that leading behavior of the upper bound is the square of system size and the dominating scaling of the lower bound varies linearly with system size. We also show that the upper bound can be achieved in linear chains and the lower bound can be reached in star graphs. This study provides a comprehensive understanding of random walks on the Vicsek fractals and general treelike networks.Comment: Definitive version accepted for publication in Physical Review

    Vertex labeling and routing in expanded Apollonian networks

    Get PDF
    We present a family of networks, expanded deterministic Apollonian networks, which are a generalization of the Apollonian networks and are simultaneously scale-free, small-world, and highly clustered. We introduce a labeling of their vertices that allows to determine a shortest path routing between any two vertices of the network based only on the labels.Comment: 16 pages, 2 figure

    Trapping in scale-free networks with hierarchical organization of modularity

    Full text link
    A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.Comment: Definitive version accepted for publication in Physical Review

    Random Sierpinski network with scale-free small-world and modular structure

    Full text link
    In this paper, we define a stochastic Sierpinski gasket, on the basis of which we construct a network called random Sierpinski network (RSN). We investigate analytically or numerically the statistical characteristics of RSN. The obtained results reveal that the properties of RSN is particularly rich, it is simultaneously scale-free, small-world, uncorrelated, modular, and maximal planar. All obtained analytical predictions are successfully contrasted with extensive numerical simulations. Our network representation method could be applied to study the complexity of some real systems in biological and information fields.Comment: 7 pages, 9 figures; final version accepted for publication in EPJ

    Transition from fractal to non-fractal scalings in growing scale-free networks

    Full text link
    Real networks can be classified into two categories: fractal networks and non-fractal networks. Here we introduce a unifying model for the two types of networks. Our model network is governed by a parameter qq. We obtain the topological properties of the network including the degree distribution, average path length, diameter, fractal dimensions, and betweenness centrality distribution, which are controlled by parameter qq. Interestingly, we show that by adjusting qq, the networks undergo a transition from fractal to non-fractal scalings, and exhibit a crossover from `large' to small worlds at the same time. Our research may shed some light on understanding the evolution and relationships of fractal and non-fractal networks.Comment: 7 pages, 3 figures, definitive version accepted for publication in EPJ

    Topologies and Laplacian spectra of a deterministic uniform recursive tree

    Full text link
    The uniform recursive tree (URT) is one of the most important models and has been successfully applied to many fields. Here we study exactly the topological characteristics and spectral properties of the Laplacian matrix of a deterministic uniform recursive tree, which is a deterministic version of URT. Firstly, from the perspective of complex networks, we determine the main structural characteristics of the deterministic tree. The obtained vigorous results show that the network has an exponential degree distribution, small average path length, power-law distribution of node betweenness, and positive degree-degree correlations. Then we determine the complete Laplacian spectra (eigenvalues) and their corresponding eigenvectors of the considered graph. Interestingly, all the Laplacian eigenvalues are distinct.Comment: 7 pages, 1 figures, definitive version accepted for publication in EPJ
    corecore