4 research outputs found

    CD28-independent Induction of T Helper Cells and Immunoglobulin Class Switches Requires Costimulation by the Heat-stable Antigen

    Get PDF
    It is well established that B7-CD28/CTLA4 interactions play an important role in the induction of T helper cells for T-dependent antibody responses. However, targeted mutation of CD28 does not significantly affect production of IgG and activation of CD4 T helper cells in response to infections by some viruses and nematode parasites. To test whether the CD28-independent induction of Ig class switches requires costimulation by the heat-stable antigen (HSA), we compared T helper cell induction and antibody response in mice deficient for either HSA, CD28, or both genes. We found that after immunization with KLH-DNP, mice deficient for both CD28 and HSA lack DNP-specific IgA and all subtypes of IgG. This deficiency corresponds to a reduced number of effector helper T cells that rapidly produce IL-2, IL-4, and IFN-γ after in vitro stimulation with carrier antigen KLH. In contrast, priming of T helper cells and Ig class switch are normal in mice deficient with either HSA or CD28 alone. IgM responses are not affected by any of these targeted mutations. These results demonstrate that CD28-independent induction of T helper cells and Ig class-switches requires costimulation by the HSA

    Regulation of the Stability of Heat-Stable Antigen mRNA by Interplay between Two Novel cis Elements in the 3′ Untranslated Region

    No full text
    The heat-stable antigen (HSA) is a costimulatory molecule for T-cell activation. Its expression is strictly regulated during lymphocyte development and differentiation. Recent studies using HSA-transgenic mice have demonstrated that this regulated expression is critical for normal development of T and B lymphocytes. However, the mechanisms that control the expression of HSA are largely unknown. HSA mRNA is comprised of a 0.23-kb open reading frame and a 1.5-kb 3′ untranslated region (3′UTR). The function of the long 3′UTR has not been addressed. Here we investigate the role of the 3′UTR of HSA mRNA. We show that a 160-bp element, located in the region of nucleotides 1465 to 1625 in the 3′UTR of HSA mRNA, promotes RNA degradation and that this effect is neutralized by a 43-bp fragment approximately 1 kb upstream of the negative cis element. Both positive and negative cis elements in the HSA mRNA are distinct from other sequences that are known to modulate mRNA stability. These results provide direct evidence that the interplay between two novel cis elements in the 3′UTR of HSA mRNA determines cell surface HSA expression by modulating its RNA stability

    Brief Definitive Report CD28-independent Induction of T Helper Cells and Immunoglobulin Class Switches Requires Costimulation by the Heat-stable Antigen

    No full text
    It is well established that B7-CD28/CTLA4 interactions play an important role in the induction of T helper cells for T-dependent antibody responses. However, targeted mutation of CD28 does not significantly affect production of IgG and activation of CD4 T helper cells in response to infections by some viruses and nematode parasites. To test whether the CD28independent induction of Ig class switches requires costimulation by the heat-stable antigen (HSA), we compared T helper cell induction and antibody response in mice deficient for either HSA, CD28, or both genes. We found that after immunization with KLH-DNP, mice deficient for both CD28 and HSA lack DNP-specific IgA and all subtypes of IgG. This deficiency corresponds to a reduced number of effector helper T cells that rapidly produce IL-2, IL-4, and IFN- � after in vitro stimulation with carrier antigen KLH. In contrast, priming of T helper cells and Ig class switch are normal in mice deficient with either HSA or CD28 alone. IgM responses are not affected by any of these targeted mutations. These results demonstrate that CD28-independent induction of T helper cells and Ig class-switches requires costimulation by the HSA. Immunological help from T cells to B cells is essential fo

    Y. A dinucleotide deletion in CD24 confers protection against autoimmune diseases. PLoS Genet 2007;3:e49

    No full text
    It is generally believed that susceptibility to both organ-specific and systemic autoimmune diseases is under polygenic control. Although multiple genes have been implicated in each type of autoimmune disease, few are known to have a significant impact on both. Here, we investigated the significance of polymorphisms in the human gene CD24 and the susceptibility to multiple sclerosis (MS) and systemic lupus erythematosus (SLE). We used cases/control studies to determine the association between CD24 polymorphism and the risk of MS and SLE. In addition, we also considered transmission disequilibrium tests using family data from two cohorts consisting of a total of 150 pedigrees of MS families and 187 pedigrees of SLE families. Our analyses revealed that a dinucleotide deletion at position 1527;1528 (P1527 del) from the CD24 mRNA translation start site is associated with a significantly reduced risk (odds ratio 0.54 with 95 % confidence interval 0.34–0.82) and delayed progression (p 0.0188) of MS. Among the SLE cohort, we found a similar reduction of risk with the same polymorphism (odds ratio 0.38, confidence interval 0.22–0.62). Mor
    corecore