559 research outputs found

    Overexpression of Pear (Pyrus pyrifolia) CAD2 in Tomato Affects Lignin Content

    Get PDF
    PpCAD2 was originally isolated from the ‘Wangkumbae’ pear (Pyrus pyrifolia Nakai), and it encodes for cinnamyl alcohol dehydrogenase (CAD), which is a key enzyme in the lignin biosynthesis pathway. In order to verify the function of PpCAD2, transgenic tomato (Solanum lycopersicum) ‘Micro-Tom’ plants were generated using over-expression constructs via the agrobacterium-mediated transformation method. The results showed that the PpCAD2 over-expression transgenic tomato plant had a strong growth vigor. Furthermore, these PpCAD2 over-expression transgenic tomato plants contained a higher lignin content and CAD enzymatic activity in the stem, leaf and fruit pericarp tissues, and formed a greater number of vessel elements in the stem and leaf vein, compared to wild type tomato plants. This study clearly indicated that overexpressing PpCAD2 increased the lignin deposition of transgenic tomato plants, and thus validated the function of PpCAD2 in lignin biosynthesis

    Sequential Star Formation in the filamentary structures of Planck Galactic cold clump G181.84+0.31

    Get PDF
    We present a multi-wavelength study of the Planck cold clump G181.84+0.31, which is located at the northern end of the extended filamentary structure S242. We have extracted 9 compact dense cores from the SCUBA-2 850 um map, and we have identified 18 young stellar objects (YSOs, 4 Class I and 14 Class II) based on their Spitzer, Wide-field Infrared Survey Explorer (WISE) and Two-Micron All-Sky Survey (2MASS) near- and mid-infrared colours. The dense cores and YSOs are mainly distributed along the filamentary structures of G181.84 and are well traced by HCO+^{+}(1-0) and N2_{2}H+^{+}(1-0) spectral-line emission. We find signatures of sequential star formation activities in G181.84: dense cores and YSOs located in the northern and southern sub-structures are younger than those in the central region. We also detect global velocity gradients of about 0.8±\pm0.05 km s−1^{-1}pc−1^{-1} and 1.0±\pm0.05 km s−1^{-1}pc−1^{-1} along the northern and southern sub-structures, respectively, and local velocity gradients of 1.2±\pm0.1 km s−1^{-1}pc−1^{-1} in the central substructure. These results may be due to the fact that the global collapse of the extended filamentary structure S242 is driven by an edge effect, for which the filament edges collapse first and then further trigger star formation activities inward. We identify three substructures in G181.84 and estimate their critical masses per unit length, which are ∌\sim 101±\pm15 M⊙_{\odot} pc−1^{-1}, 56±\pm8 M⊙_{\odot} pc−1^{-1} and 28±\pm4 M⊙_{\odot} pc−1^{-1}, respectively. These values are all lower than the observed values (∌\sim 200 M⊙_{\odot} pc−1^{-1}), suggesting that these sub-structures are gravitationally unstable.Comment: 20 pages, 17 figures, article, accepte

    Hydrocode modeling of the spallation process during hypervelocity impacts: Implications for the ejection of Martian meteorites

    Full text link
    Hypervelocity ejection of material by impact spallation is considered a plausible mechanism for material exchange between two planetary bodies. We have modeled the spallation process during vertical impacts over a range of impact velocities from 6 to 21 km/s using both grid- and particle-based hydrocode models. The Tillotson equations of state, which are able to treat the nonlinear dependence of density on pressure and thermal pressure in the strongly shocked matter, were used to study the hydrodynamic and thermodynamic response after impacts. The effects of material strength and gravitational acceleration were not considered. A two-dimensional time-dependent pressure field within a 1.5-fold projectile radius from the impact point was investigated in cylindrical coordinates to address the generation of spalled material. A resolution test was also performed to reject ejected materials with peak pressures that were too low due to artificial viscosity. The relationship between ejection velocity veject and peak pressure Ppeak was also derived. Our approach shows that late stage acceleration in an ejecta curtain occurs due to the compressible nature of the ejecta, resulting in an ejection velocity that can be higher than the ideal maximum of the resultant particle velocity after passage of a shock wave. We also calculate the ejecta mass that can escape from a planet like Mars (i.e., veject higher than 5 km/s) that matches the petrographic constraints from Martian meteorites, and which occurs when Ppeak from 30-50 GPa. Although the mass of such ejecta is limited to from 0.1-1 percent of the projectile mass in vertical impacts, this is sufficient for spallation to have been a plausible mechanism for the ejection of Martian meteorites. Finally, we propose that impact spallation is a plausible mechanism for the generation of tektites.Comment: 67 pages, 28 figures, accepted for publication in Icaru

    Cloning of a gene encoding glycosyltransferase from Pueraria lobata (Wild.) Ohwi and its expression in Pichia pastoris

    Get PDF
    The key enzyme of puerarin biosynthesis in Pueraria lobata (Willd.) Ohwi was unclear but may involve glycosylation. To investigate the regulation of puerarin biosynthesis, a putative UDP-dependent glycosyltransferase (UGT) gene, PlUGT1 was isolated from P. lobata root, which contained abundant puerarin. PlUGT1 encoded 480 deduced amino acid residues with a conserved UDP-glucose-binding domain, which has 61 to 84% similarity to homologues from other plant species. SDS polyacrylamide gel electrophoresis and western blotting results showed that, fusion protein migrated as a single protein band with a molecular weight of 55 kDa. A yeast expression vector pPICZA-PlUGT1 was constructed and was transformed into Pichia pastoris strain GS115. Several recombinants containing multi-copy expression cassettes were obtained on the zeocin-YPD plate and confirmed by southern dot blotting. The yield of PlUGT1 attained 0.05 g/l when recombinant cells were cultured at pH 5.5, 30°C and induced with 0.5% methanol for 72 h. The expression of PlUGT1 protein correlates positively with the copy numbers of PlUGT1 in transformed yeast cells. These results suggest that, the PlUGT1 protein can be expressed efficiently in the P. pastoris expression system and may supply a new economic and convenient way for the production of PlUGT1 protein.Keywords: Pueraria lobata (Willd.) Ohwi, glycosyltransferase, cloning, expression, Pichia pastori

    Molecular Cloning and Characterization of a P-Glycoprotein from the Diamondback Moth, \u3cem\u3ePlutella xylostella\u3c/em\u3e (Lepidoptera: Plutellidae)

    Get PDF
    Macrocyclic lactones such as abamectin and ivermectin constitute an important class of broad-spectrum insecticides. Widespread resistance to synthetic insecticides, including abamectin and ivermectin, poses a serious threat to the management of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major pest of cruciferous plants worldwide. P-glycoprotein (Pgp), a member of the ABC transporter superfamily, plays a crucial role in the removal of amphiphilic xenobiotics, suggesting a mechanism for drug resistance in target organisms. In this study, PxPgp1, a putative Pgp gene from P. xylostella, was cloned and characterized. The open reading frame (ORF) of PxPgp1 consists of 3774 nucleotides, which encodes a 1257-amino acid peptide. The deduced PxPgp1 protein possesses structural characteristics of a typical Pgp, and clusters within the insect ABCB1. PxPgp1 was expressed throughout all developmental stages, and showed the highest expression level in adult males. PxPgp1 was highly expressed in midgut, malpighian tubules and testes. Elevated expression of PxPgp1 was observed in P. xylostella strains after they were exposed to the abamectin treatment. In addition, the constitutive expressions of PxPgp1 were significantly higher in laboratory-selected and field-collected resistant strains in comparison to their susceptible counterpart
    • 

    corecore