1,937 research outputs found

    Revisiting the distance, environment and supernova properties of SNR G57.2+0.8 that hosts SGR 1935+2154

    Get PDF
    We have performed a multi-wavelength study of supernova remnant (SNR) G57.2+0.8 and its environment. The SNR hosts the magnetar SGR 1935+2154, which emitted an extremely bright ms-duration radio burst on 2020 Apr 28 (The Chime/Frb Collaboration et al. 2020; Bochenek et al. 2020). We used the 12CO and 13CO J=1-0 data from the Milky Way Image Scroll Painting (MWISP) CO line survey to search for molecular gas associated with G57.2+0.8, in order to constrain the physical parameters (e.g., the distance) of the SNR and its magnetar. We report that SNR G57.2+0.8 is likely impacting the molecular clouds (MCs) at the local standard of rest (LSR) velocity V_{LSR} ~ 30 km/s and excites a weak 1720 MHz OH maser with a peak flux density of 47 mJy/beam. The chance coincidence of a random OH spot falling in the SNR is <12%, and the OH-CO correspondence chance is 7% at the maser spot. This combines to give < 1% false probability of the OH maser, suggesting a real maser detection. The LSR velocity of the MCs places the SNR and magnetar at a kinematic distance of d=6.6 +/- 0.7 kpc. The nondetection of thermal X-ray emission from the SNR and the relatively dense environment suggests G57.2+0.8 be an evolved SNR with an age t>1.6×104t>1.6 \times 10^4 (d/6.6 kpc) yr. The explosion energy of G57.2+0.8 is lower than 2×1051(n0/10cm−3)1.16(d/ 6.6kpc)3.162 \times 10^{51}(n_0/10 cm^{-3})^{1.16} (d/~6.6 kpc)^{3.16} erg, which is not very energetic even assuming a high ambient density n0n_0 = 10 cm−3^{-3}. This reinforces the opinion that magnetars do not necessarily result from very energetic supernova explosions.Comment: 9 pages, 5 figures, accepted for publication in the Astrophysical Journa

    A genus-one FJRW invariant via two methods

    Full text link
    We calculate a genus-one FJRW invariant of an LG pair (W3=x13+x23+x33,μ3)(W_3=x_1^3+x_2^3+x_3^3, \mu_3) via two different methods. In the first method, we apply the cosection localization technique to get a genus-one three-spin virtual class explicitly and then calculate the target FJRW invariant via self-intersections of the three-spin virtual class. In the second method, we apply the Mixed Spin P-fields method for the pair and calculate the invariant using the localization formula. This invariant is the building block in establishing the all-genera LG/CY correspondence and its determination enables one to compute the all-genera FJRW invariants for the LG pair.Comment: 24 pages, 7 figures, minor change

    Use of low-dose computed tomography to assess pulmonary tuberculosis among healthcare workers in a tuberculosis hospital

    Get PDF
    BACKGROUND: According to the World Health Organization, China is one of 22 countries with serious tuberculosis (TB) infections and one of the 27 countries with serious multidrug-resistant TB strains. Despite the decline of tuberculosis in the overall population, healthcare workers (HCWs) are still at a high risk of infection. Compared with high-income countries, the TB prevalence among HCWs is higher in low- and middle-income countries. Low-dose computed tomography (LDCT) is becoming more popular due to its superior sensitivity and lower radiation dose. However, there have been no reports about active pulmonary tuberculosis (PTB) among HCWs as assessed with LDCT. The purposes of this study were to examine PTB statuses in HCWs in hospitals specializing in TB treatment and explore the significance of the application of LDCT to these workers. METHODS: This study retrospectively analysed the physical examination data of healthcare workers in the Beijing Chest Hospital from September 2012 to December 2015. Low-dose lung CT examinations were performed in all cases. The comparisons between active and inactive PTB according to the CT findings were made using the Pearson chi-square test or the Fisher’s exact test. Comparisons between the incidences of active PTB in high-risk areas and non-high-risk areas were performed using the Pearson chi-square test. Analyses of active PTB were performed according to different ages, numbers of years on the job, and the risks of the working areas. Active PTB as diagnosed by the LDCT examinations alone was compared with the final comprehensive diagnoses, and the sensitivity and positive predictive value were calculated. RESULTS: A total of 1 012 participants were included in this study. During the 4-year period of medical examinations, active PTB was found in 19 cases, and inactive PTB was found in 109 cases. The prevalence of active PTB in the participants was 1.24%, 0.67%, 0.81%, and 0.53% for years 2012 to 2015. The corresponding incidences of active PTB among the tuberculosis hospital participants were 0.86%, 0.41%, 0.54%, and 0.26%. Most HCWs with active TB (78.9%, 15/19) worked in the high-risk areas of the hospital. There was a significant difference in the incidences of active PTB between the HCWs who worked in the high-risk and non-high-risk areas (odds ratio [OR], 14.415; 95% confidence interval (CI): 4.733 – 43.896). Comparisons of the CT signs between the active and inactive groups via chi-square tests revealed that the tree-in-bud, cavity, fibrous shadow, and calcification signs exhibited significant differences (P = 0.000, 0.021, 0.001, and 0.024, respectively). Tree-in-bud and cavity opacities suggest active pulmonary tuberculosis, whereas fibrous shadow and calcification opacities are the main features of inactive pulmonary tuberculosis. Comparison with the final comprehensive diagnoses revealed that the sensitivity and positive predictive value of the diagnoses of active PTB based on LDCT alone were 100% and 86.4%, respectively. CONCLUSIONS: Healthcare workers in tuberculosis hospitals are a high-risk group for active PTB. Yearly LDCT examinations of such high-risk groups are feasible and necessary. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40249-017-0274-6) contains supplementary material, which is available to authorized users

    Thermoelastic properties and thermal evolution of the Martian core from ab initio calculated ferromagnetic Fe-S liquid

    Full text link
    The accurate thermoelastic properties and thermal conductivity are crucial in understanding the thermal evolution of the Martian core. A fitting method based on the ab initio calculated pressure-volume-temperature data is proposed in the formulation of the equation of state with high accuracy, by which the pressure and temperature dependent thermoelastic properties can be directly calculated by definitions. The ab initio results show that the liquid Fe0.75S0.25 under Martian core condition is thoroughly in the ferromagnetic state, without existing spin crossover. The liquid Fe0.75S0.25 in magnetic calculation owns a low thermal conductivity (21~23 W/m/K) when compared with non-magnetic calculation at the same state. Based on the Insight estimated and ab initio calculated properties of the Martian core, the iron snow model is verified when the current temperature at the core-mantle boundary is below the core melting temperature, and the simply secular cooling model is verified on the contrary
    • …
    corecore