5,115 research outputs found
Better synchronizability predicted by a new coupling method
In this paper, inspired by the idea that the hub nodes of a highly
heterogeneous network are not only the bottlenecks, but also effective
controllers in the network synchronizing process, we bring forward an
asymmetrical coupling method where the coupling strength of each node depends
on its neighbors' degrees. Compared with the uniform coupled method and the
recently proposed Motter-Zhou-Kurth method, the synchronizability of scale-free
networks can be remarkably enhanced by using the present coupled method.Comment: 6 pages, 6 figures; to be published in EPJ
Enhance synchronizability via age-based coupling
In this brief report, we study the synchronization of growing scale-free
networks. An asymmetrical age-based coupling method is proposed with only one
free parameter . Although the coupling matrix is asymmetric, our
coupling method could guarantee that all the eigenvalues are non-negative
reals. The eigneratio R will approach to 1 in the large limit of .Comment: 3 pages, 1 figur
Enhance synchronizability by structural perturbations
In this paper, we investigate the collective synchronization of system of
coupled oscillators on Barab\'{a}si-Albert scale-free network. We propose an
approach of structural perturbations aiming at those nodes with maximal
betweenness. This method can markedly enhance the network synchronizability,
and is easy to be realized. The simulation results show that the eigenratio
will sharply decrease to its half when only 0.6% of those hub nodes are under
3-division processes when network size N=2000. In addition, the present study
also provides a theoretical evidence that the maximal betweenness plays a main
role in network synchronization.Comment: 4 pages, 3 eps figure
Recommended from our members
Postsynaptic protein organization revealed by electron microscopy.
Neuronal synapses are key devices for transmitting and processing information in the nervous system. Synaptic plasticity, generally regarded as the cellular basis of learning and memory, involves changes of subcellular structures that take place at the nanoscale. High-resolution imaging methods, especially electron microscopy (EM), have allowed for quantitative analysis of such nanoscale structures in different types of synapses. In particular, the semi-ordered organization of neurotransmitter receptors and their interacting scaffolds in the postsynaptic density have been characterized for both excitatory and inhibitory synapses by studies using various EM techniques such as immuno-EM, electron tomography of high-pressure freezing and freeze-substituted samples, and cryo electron tomography. These techniques, in combination with new correlative approaches, will further facilitate our understanding of the molecular organization underlying diverse functions of neuronal synapses
- …