107 research outputs found
Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks
Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be
promising in the fifth generation (5G) wireless networks. H-CRANs enable users
to enjoy diverse services with high energy efficiency, high spectral
efficiency, and low-cost operation, which are achieved by using cloud computing
and virtualization techniques. However, H-CRANs face many technical challenges
due to massive user connectivity, increasingly severe spectrum scarcity and
energy-constrained devices. These challenges may significantly decrease the
quality of service of users if not properly tackled. Non-orthogonal multiple
access (NOMA) schemes exploit non-orthogonal resources to provide services for
multiple users and are receiving increasing attention for their potential of
improving spectral and energy efficiency in 5G networks. In this article a
framework for energy-efficient NOMA H-CRANs is presented. The enabling
technologies for NOMA H-CRANs are surveyed. Challenges to implement these
technologies and open issues are discussed. This article also presents the
performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure
Robust AN-Aided Beamforming Design for Secure MISO Cognitive Radio Based on a Practical Nonlinear EH Model
Energy harvesting techniques are promising in next generation wireless communication systems. However, most of the existing works are based on an ideal linear energy harvesting model. In this paper, a multiple-input single-output cognitive radio network is studies under a practical non-linear energy harvesting model. In order to improve the security of both the primary network and the secondary network, a cooperative jamming scheme is proposed. A robust artificial noise aided beamforming design problem is formulated under the bounded channel state information error model. The formulated problem is non-convex and challenging to be solved. Using S-procedure and the semidefinite relaxation method, a suboptimal beamforming can be obtained. Simulation results show that the performance achieved under the non-linear energy harvesting model may be better than that obtained under the linear energy harvesting model. It is also shown that the cooperation betwen the primary network and the secondary network can obtain a performance gain compared with that without this cooperation
- …