12 research outputs found
HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis
Aberrant expression of HOXA9 is a prominent feature of acute leukemia driven by diverse oncogenes. Here we show that HOXA9 overexpression in myeloid and B progenitor cells leads to significant enhancer reorganizations with prominent emergence of leukemia-specific de novo enhancers. Alterations in the enhancer landscape lead to activation of an ectopic embryonic gene program. We show that HOXA9 functions as a pioneer factor at de novo enhancers and recruits CEBPα and the MLL3/MLL4 complex. Genetic deletion of MLL3/MLL4 blocks histone H3K4 methylation at de novo enhancers and inhibits HOXA9/MEIS1-mediated leukemogenesis in vivo. These results suggest that therapeutic targeting of HOXA9-dependent enhancer reorganization can be an effective therapeutic strategy in acute leukemia with HOXA9 overexpressio
Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity
ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents
Quiescence enables unrestricted cell fate in naive embryonic stem cells
Abstract Quiescence in stem cells is traditionally considered as a state of inactive dormancy or with poised potential. Naive mouse embryonic stem cells (ESCs) can enter quiescence spontaneously or upon inhibition of MYC or fatty acid oxidation, mimicking embryonic diapause in vivo. The molecular underpinning and developmental potential of quiescent ESCs (qESCs) are relatively unexplored. Here we show that qESCs possess an expanded or unrestricted cell fate, capable of generating both embryonic and extraembryonic cell types (e.g., trophoblast stem cells). These cells have a divergent metabolic landscape comparing to the cycling ESCs, with a notable decrease of the one-carbon metabolite S-adenosylmethionine. The metabolic changes are accompanied by a global reduction of H3K27me3, an increase of chromatin accessibility, as well as the de-repression of endogenous retrovirus MERVL and trophoblast master regulators. Depletion of methionine adenosyltransferase Mat2a or deletion of Eed in the polycomb repressive complex 2 results in removal of the developmental constraints towards the extraembryonic lineages. Our findings suggest that quiescent ESCs are not dormant but rather undergo an active transition towards an unrestricted cell fate
NOP10 predicts lung cancer prognosis and its associated small nucleolar RNAs drive proliferation and migration
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide underlining the urgent need for new biomarkers and therapeutic targets for this disease. Long noncoding RNAs are critical players in NSCLC but the role of small RNA species is not well understood. In the present study, we investigated the role of H/ACA box small nucleolar RNAs (snoRNAs) and snoRNA-bound ribonucleoproteins (snoRNPs) in the tumorigenesis of NSCLC. H/ACA box snoRNPs including the NOP10 core protein were highly expressed in NSCLC. High levels of either NOP10 mRNA or protein were associated with poor prognosis in NSCLC patients. Loss of NOP10 and subsequent reduction of H/ACA box snoRNAs and rRNA pseudouridylation inhibited lung cancer cell growth, colony formation, migration, and invasion. A focused CRISPR/Cas9 snoRNA knockout screen revealed that genomic deletion of SNORA65, SNORA7A, and SNORA7B reduced proliferation of lung cancer cells. In line, high levels of SNORA65, SNORA7A, and SNORA7B were observed in primary lung cancer specimens with associated changes in rRNA pseudouridylation. Knockdown of either SNORA65 or SNORA7A/B inhibited growth and colony formation of NSCLC cell lines. Our data indicate that specific H/ACA box snoRNAs and snoRNA-associated proteins such as NOP10 have an oncogenic role in NSCLC providing new potential biomarkers and therapeutic targets for the disease
NOP10 predicts lung cancer prognosis and its associated small nucleolar RNAs drive proliferation and migration
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide underlining the urgent need for new biomarkers and therapeutic targets for this disease. Long noncoding RNAs are critical players in NSCLC but the role of small RNA species is not well understood. In the present study, we investigated the role of H/ACA box small nucleolar RNAs (snoRNAs) and snoRNA-bound ribonucleoproteins (snoRNPs) in the tumorigenesis of NSCLC. H/ACA box snoRNPs including the NOP10 core protein were highly expressed in NSCLC. High levels of either NOP10 mRNA or protein were associated with poor prognosis in NSCLC patients. Loss of NOP10 and subsequent reduction of H/ACA box snoRNAs and rRNA pseudouridylation inhibited lung cancer cell growth, colony formation, migration, and invasion. A focused CRISPR/Cas9 snoRNA knockout screen revealed that genomic deletion of SNORA65, SNORA7A, and SNORA7B reduced proliferation of lung cancer cells. In line, high levels of SNORA65, SNORA7A, and SNORA7B were observed in primary lung cancer specimens with associated changes in rRNA pseudouridylation. Knockdown of either SNORA65 or SNORA7A/B inhibited growth and colony formation of NSCLC cell lines. Our data indicate that specific H/ACA box snoRNAs and snoRNA-associated proteins such as NOP10 have an oncogenic role in NSCLC providing new potential biomarkers and therapeutic targets for the disease
Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity
ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents