68 research outputs found

    Marginal abatement costs of carbon dioxide in China: A nonparametric analysis

    Get PDF
    AbstractThe estimates of abatement costs about CO2 can provide useful information for policy-makers. With the framework of production theory, a marginal abatement costs model is established using the nonparametric method, and empirical results about China in 2007 are found in this paper. The two CO2 reduction strategies, maintaining the level of CO2 or reducing CO2 and expanding GDP at the same time, impact potential GDP greatly. 143.5 millions CO2 reduction means 35.1billions GDP loss and the marginal abatement cost of CO2 is 475.3yuan/ton on average

    Decoupled measurement and modeling of interface reaction kinetics of ion-intercalation battery electrodes

    Full text link
    Ultrahigh rate performance of active particles used in lithium-ion battery electrodes has been revealed by single-particle measurements, which indicates a huge potential for developing high-power batteries. However, the charging/discharging behaviors of single particles at ultrahigh C-rates can no longer be described by the traditional electrochemical kinetics in such ion-intercalation active materials. In the meantime, regular kinetic measuring methods meet a challenge due to the coupling of interface reaction and solid-state diffusion processes of active particles. Here, we decouple the reaction and diffusion kinetics via time-resolved potential measurements with an interval of 1 ms, revealing that the classical Butler-Volmer equation deviates from the actual relation between current density, overpotential, and Li+ concentration. An interface ion-intercalation model is developed which considers the excess driving force of Li+ (de)intercalation in the charge transfer reaction for ion-intercalation materials. Simulations demonstrate that the proposed model enables accurate prediction of charging/discharging at both single-particle and electrode scales for various active materials. The kinetic limitation processes from single particles to composite electrodes are systematically revealed, promoting rational designs of high-power batteries

    Overpotential decomposition enabled decoupling of complex kinetic processes in battery electrodes

    Full text link
    Identifying overpotential components of electrochemical systems enables quantitative analysis of polarization contributions of kinetic processes under practical operating conditions. However, the inherently coupled kinetic processes lead to an enormous challenge in measuring individual overpotentials, particularly in composite electrodes of lithium-ion batteries. Herein, the full decomposition of electrode overpotential is realized by the collaboration of single-layer structured particle electrode (SLPE) constructions and time-resolved potential measurements, explicitly revealing the evolution of kinetic processes. Perfect prediction of the discharging profiles is achieved via potential measurements on SLPEs, even in extreme polarization conditions. By decoupling overpotentials in different electrode/cell structures and material systems, the dominant limiting processes of battery rate performance are uncovered, based on which the optimization of electrochemical kinetics can be conducted. Our study not only shades light on decoupling complex kinetics in electrochemical systems, but also provides vitally significant guidance for the rational design of high-performance batteries

    Optimizing carbon tax for decentralized electricity markets using an agent-based model

    Full text link
    Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology. A way to achieve this is to decarbonize the electricity grid. However, further efforts must be made in other fields such as transport and heating for full decarbonization. This would reduce carbon emissions due to electricity generation, and also help to decarbonize other sources such as automotive and heating by enabling a low-carbon alternative. Carbon taxes have been shown to be an efficient way to aid in this transition. In this paper, we demonstrate how to to find optimal carbon tax policies through a genetic algorithm approach, using the electricity market agent-based model ElecSim. To achieve this, we use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix. We demonstrate that it is possible to find a range of carbon taxes to suit differing objectives. Our results show that we are able to minimize electricity cost to below \textsterling10/MWh as well as carbon intensity to zero in every case. In terms of the optimal carbon tax strategy, we found that an increasing strategy between 2020 and 2035 was preferable. Each of the Pareto-front optimal tax strategies are at least above \textsterling81/tCO2 for every year. The mean carbon tax strategy was \textsterling240/tCO2.Comment: Accepted at The Eleventh ACM International Conference on Future Energy Systems (e-Energy'20) AMLIES Worksho

    Biodegradable double-network GelMA-ACNM hydrogel microneedles for transdermal drug delivery

    Get PDF
    As a minimally invasive drug delivery platform, microneedles (MNs) overcome many drawbacks of the conventional transdermal drug delivery systems, therefore are favorable in biomedical applications. Microneedles with a combined burst and sustained release profile and maintained therapeutic molecular bioactivity could further broaden its applications as therapeutics. Here, we developed a double-network microneedles (DN MNs) based on gelatin methacrylate and acellular neural matrix (GelMA-ACNM). ACNM could function as an early drug release matrix, whereas the addition of GelMA facilitates sustained drug release. In particular, the double-network microneedles comprising GelMA-ACNM hydrogel has distinctive biological features in maintaining drug activity to meet the needs of application in treating different diseases. In this study, we prepared the double-network microneedles and evaluated its morphology, mechanical properties, drug release properties and biocompatibility, which shows great potential for delivery of therapeutic molecules that needs different release profiles in transdermal treatment

    A Review of New Trends for Country of Origin Research

    No full text

    Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis

    No full text
    There exist many differences between urban and rural China among which residential CO2 emissions arising from energy consumption is a major one. In this paper, we estimate and compare the energy related CO2 emissions from urban and rural residential energy consumption from 1991 to 2004. The logarithmic mean Divisia index decomposition analysis is then applied to investigate the factors that may affect the changes of the CO2 emissions. It is found that energy intensity and the income effects, respectively, contributed most to the decline and the increase of residential CO2 emissions for both urban and rural China. In urban China, the population effect was found to contribute to the increase of residential CO2 emissions with a rising tendency. However, in rural China, the population effect for residential CO2 emissions kept decreasing since 1998.Residential energy consumption CO2 emissions Index decomposition analysis

    Biodiversity of saprobic microfungi associated with bamboo in Hong Kong and Kunming, China

    No full text
    published_or_final_versionEducationDoctoralDoctor of Philosoph

    Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties

    No full text
    The cost of centralized photovoltaic (CPV) power generation has been decreasing rapidly in China. However, the achievement of grid parity is full of uncertainties due to changes in policies and the industry environment. In order to explore the time, price, and external conditions in which grid parity can be achieved, we create the improved grey GM (1, 1) model to estimate the installed capacity over the next 10 years, and apply a learning curve to predict the cost of CPV generation. In the analysis of grid parity, we compare the benchmark price of coal power and the price under the market-oriented mechanism with CPV. The results show that China’s CPV industry will enter the early stage of maturity from 2020 onwards; with the help of benchmark investment, the grid parity of CPV may be achieved in 2022 at the earliest and 2025 at the latest. After 2025, the photovoltaic electricity price will be generally lower than the coal electricity price under marketization. By 2030, CPV power generation costs will reach US $0.05/kWh, the accumulative installed capacity will exceed 370 GW, and the uncertainties will lead to a cumulative installed gap of nearly 100 GW
    • …
    corecore