102 research outputs found

    Supervisory control of discrete event systems for bisimulation or simulation equivalence

    Get PDF
    The supervisory control of discrete event systems provides a framework for control of event-driven systems. Applications of supervisory control theory include protocol design for communication processes, control logic synthesis in manufacturing systems, and collision avoidance in human-computer interaction systems.;When designing a system at a certain level of abstraction, lower level details of the system and its specification are normally omitted to obtain higher level models that may be (non-deterministic) event-driven systems. Nondeterministic systems exhibit both branching and sequential behaviors and are captured using bisimulation equivalence (the traditional language equivalence only captures sequential behaviors). Simulation equivalence is more expressive than language equivalence but captures only the universal fragment of branching behaviors.;This dissertation presents supervisory control of discrete event systems for enforcing bisimulation equivalence or simulation equivalence with respect to given specifications. We show that in the general setting of nondeterministic systems and specifications, the complexity for bisimilarity enforcing control is doubly exponential and for similarity enforcing control remains polynomial solvable. So the choice of behavioral equivalence used depends on the application at hand and there is a trade-off between the expressivity and the complexity. We further show that the bisimilarity enforcing control problem becomes polynomially solvable when the system model is deterministic and there is complete observability of events. When the complete observability requirement is relaxed, the control existence problem remains polynomially solvable and the control synthesis problem becomes singly exponential. These complexities are similar to the ones for control under partial observation in completely deterministic setting Tsitsiklis (1989).;We introduce various notions of state-controllability (SC), state-recognizability (SR), state-achievability (SA), state-controllable-similar (SCS), state-controllability-bisimilar (SCB), and state-achievability-bisimilar (SAB) for deterministic system model. SC is a property of a controlled system under complete observation. Under partial observation, an additional property of a controlled system due to the partial observation is SR. The combined property of SC and SR is called SA. We show that properties of SC, SR and SA are not preserved under bisimulation equivalence and therefore cannot be served as a necessary condition for the existence of a bisimilarity enforcing supervisor. We introduce the notions of SCB and SAB, which are preserved under bisimulation, as part of the necessary and sufficient condition for the existence of a supervisor under complete and partial observation, respectively. We show that SC is not preserved under simulation equivalence and introduce SCS as a necessary and sufficient condition for the existence of a similarity enforcing supervisor under complete observation.;The aforementioned results use strict synchronous composition (SSC) of the system and supervisor as a mechanism of control. In SSC, it is required that individual systems synchronously execute all events. Prioritized synchronous composition (PSC) relaxed such synchronization requirements and this has been shown to enrich the control capability when the plant is non-deterministic. (The presence of nondeterminism in a plant model may cause the current state to be known with ambiguity, and allowing the flexibility of not synchronizing an event at all the candidate states that plant may have reached provides for additional benefits.) This dissertation introduces a notion of prioritized synchronous composition under mask (PSCM) to account for partial observation. We study the supervisory control when PSCM is adopted as a mechanism of interaction for both language and bisimulation equivalences. We show that the control & observation-compatibility requirements are removed of a supervisor. For control to achieve a language equivalence, the existence condition is given by achievability that is weaker than controllability and observability combined. (The weaker condition is required since we allow supervisors to be nondeterministic.) This suggests that the notion of PSCM is an appropriate generalization of PSC to account for partial observation

    Mechanisms underlying uridine adenosine tetraphosphate-induced vascular contraction in mouse aorta: Role of thromboxane and purinergic receptors

    Get PDF
    Uridine adenosine tetraphosphate (Up4A), a novel endothelium-derived vasoactive agent, is proposed to play a role in cardiovascular disorders and induces aortic contraction through activation of cyclooxygenases (COX). We and others demonstrated that activation of A1 or A3 adenosine receptors (AR) results in vascular contraction via thromboxane (TX) A2 production. However, the mechanisms of Up4A-induced vascular contraction in mouse aorta are not understood. We hypothesize that Up4A-induced aortic contraction is through COX-derived TXA2 production, which requires activation of A1 and/or A3AR. Concentration responses to Up4A were conducted in isolated aorta. The TXB2 production, a metabolite of TXA2, was also measured. Up4A (10(-9)-10(-5) M) produced a concentration-dependent contraction >70%, which was markedly attenuated by COX and COX1 but not by COX2 inhibition. Notably, Up4A-induced aortic contraction was blunted by both TX synthase inhibitor ozagrel and TXA2 receptor (TP) antagonist SQ29548. Surprisingly, A3AR deletion had no effect on Up4A-induced contraction. Moreover, A1AR deletion or antagonism as well as A1/A3AR deletion potentiated Up4A-induced aortic contraction, suggesting a vasodilator influence of A1AR. In contrast, non-selective purinergic P2 receptor antagonist PPADS significantly blunted Up4A-induced aortic contraction to a similar extent as selective P2X1R antagonist MRS2159, the latter of which was further reduced by addition of ozagrel. Endothelial denudation almost fully attenuated Up4A-induced contraction. Furthermore, Up4A (3 Ī¼M) increased TXB2 formation, which was inhibited by either MRS2159 or ozagrel. In conclusion, Up4A-induced aortic contraction depends on activation of TX synthase and TP, which partially requires the activation of P2X1R but not A1 or A3 AR through an endothelium-dependent mechanism

    Characterization of porcine ENO3: genomic and cDNA structure, polymorphism and expression

    Get PDF
    In this study, a full-length cDNA of the porcine ENO3 gene encoding a 434 amino acid protein was isolated. It contains 12 exons over approximately 5.4 kb. Differential splicing in the 5'-untranslated sequence generates two forms of mRNA that differ from each other in the presence or absence of a 142-nucleotide fragment. Expression analysis showed that transcript 1 of ENO3 is highly expressed in liver and lung, while transcript 2 is highly expressed in skeletal muscle and heart. We provide the first evidence that in skeletal muscle expression of ENO3 is different between Yorkshire and Meishan pig breeds. Furthermore, real-time polymerase chain reaction revealed that, in Yorkshire pigs, skeletal muscle expression of transcript 1 is identical at postnatal day-1 and at other stages while that of transcript 2 is higher. Moreover, expression of transcript 1 is lower in skeletal muscle and all other tissue samples than that of transcript 2, with the exception of liver and kidney. Statistical analysis showed the existence of a polymorphism in the ENO3 gene between Chinese indigenous and introduced commercial western pig breeds and that it is associated with fat percentage, average backfat thickness, meat marbling and intramuscular fat in two different populations

    <em>Fusarium graminearum</em> Species Complex and Trichothecene Genotype

    Get PDF
    The fungal phytopathogen in Fusarium species can cause Fusarium head blight of wheat, barley, oats, and other small cereal grain crops worldwide. Most importantly, these fungi can produce different kinds of mycoxins, and they are harmful to humans and animal health. FAO reported that approximately 25% of the worldā€™s grains were contaminated by mycotoxins annually. This chapter will focus on several topics as below: (1) composition of Fusarium graminearum species complex; (2) genotype determination of Fusarium graminearum species complex strains from different hosts and their population structure changes; (3) genetic approaches to genotype determination in type B-trichothecene producing Fusaria fungi; and (4) some newly identified trichothecene mycotoxins, their toxicity, and distribution of the producers

    Innovation event model for STEM education: A constructivism perspective

    Get PDF
    STEM education aims to cultivate innovative talents by improving students' ability to comprehensively apply interdisciplinary knowledge in solving practical problems. This paper first develops an innovation event model through the analysis of 50 historical innovation events that can be traced back to whole human history. The model divides the realization process of those innovation events into four steps: 1) pointing out a problem, 2) proposing solutions to the problem, 3) concrete implementation of those solutions, and 4) iterative modification process. And then, the relationship between innovation event model and STEM education is established from the perspectives of subject integration and constructivism of STEM education. Based on this model, we can understand some key issues in the implementation of STEM education from a top-down view, including the nature of STEM education, the knowledge integration model, and the relationship between subject-specific education and integrated education. This will help to gradually improve our cognition and understanding of STEM education, so as to achieve its initial goal of integrated and innovative education. This article will contribute to a holistic rethinking about how to renovate STEM education in different levels of schools and colleges, equipped with such an innovation event model

    Expression pattern and polymorphism of three microsatellite markers in the porcine CA3 gene

    Get PDF
    Carbonic anhydrase III (CA3) is an abundant muscle protein characteristic of adult type-1, slow-twitch, muscle fibres. In order to further understand the functions of the porcine CA3 protein in muscle, the temporal and spatial distributions of its gene product were analysed and the association between the presence of specific polymorphisms and carcass traits in the pig was also examined. Real-time PCR revealed that the CA3 mRNA expression showed no differences with age in skeletal muscles from Yorkshire pigs at postnatal day-1, month-2, and month-4. We provide the first evidence that CA3 is differentially expressed in the skeletal muscle of Yorkshire and Meishan pig breeds. In addition, the whole pig genomic DNA sequence of CA3 was investigated and shown to contain seven exons and six introns. Comparative sequencing of the gene from three pig breeds revealed the existence of microsatellite SJ160 in intron 5 and microsatellite SJ158 and a novel microsatellite marker that includes a tandem repeat of (TC)n in intron 4. We also determined the allele number and frequencies of the three loci in seven pig breeds and found that they are low polymorphic microsatellite markers. Statistical analysis showed that the CA3 microsatellite polymorphism was associated with dressing percentage, internal fat rate, carcass length, rib number and backfat thickness in the pig

    Agricultural Education for Sustainable Rural Development in Developing Countries ā€“ Challenges and Policy Options

    Full text link
    Governments all over the world have focused upon sustainable rural development in an organized way. Rural locations, in particular, need more economic development in order to match urban centric development. Poverty in rural areas has remained by and large, the main focal point of governments and development agencies. Sustainable rural development is the most effective way to eliminate this curse. Environment friendly growth stimulators have been provided to rural populations. This paper aims to: (a) give an insight into the linkages between the agricultural education and sustainable rural development, and (b) present strategies for sustainable rural development. Challenges in sustainable rural development for developing countries in the 21st century have also been looked into. The paper concludes that agricultural education institutions in developing countries will need to address not only immediate production needs, but also long-term food security, sustainable agriculture and rural development needs

    Overexpression of the homoterpene synthase gene, OsCYP92C21, increases emissions of volatiles mediating tritrophic interactions in rice

    Get PDF
    Plant defense homoterpenes can be used to attract pest natural enemies. However, the biosynthetic pathway of homoterpenes is still unknown in rice, and the practical application of such indirect defense systems suffers from inherent limitations due to their low emissions from plants. Here, we demonstrated that the protein OsCYP92C21 is responsible for homoterpene biosynthesis in rice. We also revealed that the ability of rice to produce homoterpenes is dependent on the subcellular precursor pools. By increasing the precursor pools through specifically subcellular targeting expression, genetic transformation and genetic introgression, we significantly enhanced homoterpene biosynthesis in rice. The final introgressed GM rice plants exhibited higher homoterpene emissions than the wild type rice and the highest homoterpene emission reported so far for such GM plants even without the induction of herbivore attack. As a result, these GM rice plants demonstrated strong attractiveness to the parasitic wasp Cotesia chilonis. This study discovered the homoterpene biosynthesis pathway in rice, and lays the foundation for the utilization of plant indirect defense mechanism in the ā€œpushā€pullā€ strategy of integrated pest management through increasing precursor pools in the subcellular compartments and overexpressing homoterpene synthase by genetic transformation

    Activation of adenosine A2A but not A2B receptors is involved in uridine adenosine tetraphosphate-induced porcine coronary smooth muscle relaxation

    Get PDF
    Activation of both adenosine A2A and A2B receptors (A2BR) contributes to coronary vasodilation. We previously demonstrated that uridine adenosine tetraphosphate (Up4A) is a novel vasodilator in the porcine coronary microcirculation, acting mainly on A2AR in smooth muscle cells (SMC). We further investigated whether activation of A2BR is involved in Up4A-mediated coronary SMC relaxation. Both A2AR and A2BR may stimulate H2O2 production leading to activation of KATP channels in SMCs, we also studied the involvement of H2O2 and KATP channels in Up4A-mediated effect. Coronary small arteries dissected from the apex of porcine hearts were mounted on wire myograph for Up4A concentration responses. Up4A-induced coronary SMC relaxation was attenuated by A2AR but not A2BR antagonism or non-selective P2R antagonism, despite greater endogenous A2BR expression vs. A2AR in both coronary small arteries and primary cultured coronary SMCs. Moreover, Up4A-induced coronary SMC relaxation was blunted by H2O2 catabolism. This effect was not altered by KATP channel blockade. Combination of H2O2 catabolism and A2AR antagonism attenuated Up4A-induced coronary SMC relaxation to the similar extent as A2AR antagonism alone. Collectively, Up4A-induced porcine coronary SMC relaxation is mediated by activation of A2AR-H2O2 pathway. This process does not involve A2BR, P2R or KATP channels
    • ā€¦
    corecore