92 research outputs found

    Connecting Software Metrics across Versions to Predict Defects

    Full text link
    Accurate software defect prediction could help software practitioners allocate test resources to defect-prone modules effectively and efficiently. In the last decades, much effort has been devoted to build accurate defect prediction models, including developing quality defect predictors and modeling techniques. However, current widely used defect predictors such as code metrics and process metrics could not well describe how software modules change over the project evolution, which we believe is important for defect prediction. In order to deal with this problem, in this paper, we propose to use the Historical Version Sequence of Metrics (HVSM) in continuous software versions as defect predictors. Furthermore, we leverage Recurrent Neural Network (RNN), a popular modeling technique, to take HVSM as the input to build software prediction models. The experimental results show that, in most cases, the proposed HVSM-based RNN model has a significantly better effort-aware ranking effectiveness than the commonly used baseline models

    Boosting thermoelectric efficiency using time-dependent control

    Full text link
    Thermoelectric efficiency is defined as the ratio of power delivered to the load of a device to the rate of heat flow from the source. Till date, it has been studied in presence of thermodynamic constraints set by the Onsager reciprocal relation and the second law of thermodynamics that severely bottleneck the thermoelectric efficiency. In this study, we propose a pathway to bypass these constraints using a time-dependent control and present a theoretical framework to study dynamic thermoelectric transport in the far from equilibrium regime. The presence of a control yields the sought after substantial efficiency enhancement and importantly a significant amount of power supplied by the control is utilised to convert the wasted-heat energy into useful-electric energy. Our findings are robust against nonlinear interactions and suggest that external time-dependent forcing, which can be incorporated with existing devices, provides a beneficial scheme to boost thermoelectric efficiency.Comment: 8 pages + 3 figures (Accepted in Scientific Reports

    Spin Seebeck Effect in Asymmetric Four-Terminal Systems with Rashba Spin-Orbit Coupling

    Full text link
    We propose a new type of the spin Seebeck effect (SSE) emerging from the Rashba spin-orbit coupling in asymmetric four-terminal electron systems. This system generates spin currents or spin voltages along the longitudinal direction parallel to the temperature gradient in the absence of magnetic fields. The remarkable result arises from the breaking of reflection symmetry along the transverse direction. In the meantime, the SSE along the transverse direction, so-called the spin Nernst effect, with spin currents or spin voltages perpendicular to the temperature gradient can be simultaneously realized in our system. We further find that it is possible to use the temperature differences between four leads to tune the spin Seebeck coefficients.Comment: 14 pages, 4 figure

    Inhomogeneous Thermal Conductivity Enhances Thermoelectric Cooling

    Full text link
    We theoretically investigate the enhancement of thermoelectric cooling performance in thermoelectric devices made of materials with inhomogeneous thermal conductivity, beyond the usual practice of enhancing thermoelectric figure of merit ZT. The dissipation of Joule heat in such thermoelectric devices is asymmetric which can give rise to better thermoelectric cooling performance. Although the thermoelectric figure of merit and the coefficient-of-performance are only slightly enhanced, both the maximum cooling power and the maximum cooling temperature difference can be enhanced significantly. This finding can be used to increase the heat absorption at the cold end. The asymmetric dissipation of Joule heat also leads to thermal rectification.Comment: 20 pages and 3 figure
    corecore