54 research outputs found

    Flowing water enabled piezoelectric potential of flexible composite film for enhanced photocatalytic performance

    Get PDF
    Fast charge transfer and low recombination rate are two vital requirements to achieve high photocatalytic activity. In this work, we report the conversion of flowing water energy to piezoelectric potential on a new type of flexible composite film PVDF-NaBiTiO-BiOClBr (PV-N-B) containing PVDF-NaBiTiO (PV-N) substrate and BiOClBr, which significantly boosts the charge transfer of the photocatalytic composite film, resulting in improved photocatalytic capability by 2.33 times. The role of piezoelectric potential in photocatalysis process has been discussed in detail and the results reveal that higher potential output is more beneficial for photocatalytic performance enhancement. Moreover, the photocatalytic degradation intermediates of tetracycline (TC) over PV-N-B were detected by liquid chromatography-mass spectrometer and the possible photodegradation pathway of TC has been reasonably proposed. It is verified that superoxide radicals are the main active species for PV-N-B to degrade TC. The durability experiments demonstrate the good stability of flexible composite film PV-N-B. In a wider perspective, this work provides an efficient flexible composite film, with great capability in converting flowing water energy into piezoelectric potential and improving photocatalytic activity, to bring the environmental pollution under control

    Thermally-Induced Self-Healing Behaviors and Properties of Four Epoxy Coatings with Different Network Architectures

    No full text
    The thermally-induced self-healing behavior of polymer coatings consists of two steps, i.e., gap closure and crack repair. In addition, the polymer coatings with thermally-induced self-healing capability are expected to show satisfied properties to ensure the application. Here, four epoxy coatings with dense irreversible Network I, dense reversible Network II based on a Diels–Alder (DA) reaction, loose irreversible Network III, as well as partially irreversible and partially reversible Network IV were prepared, respectively. The dense irreversible Network I showed an evident gap closure upon heating, while the crack still existed at the high temperature. The dense reversible Network II presented good self-healing upon direct heating at a high temperature of 150 °C, leading to the quick gap closure in 40 s and subsequent crack disappearance in 80 s. The loose irreversible Network III showed negligible crack variations upon heating, while the partially reversible and partially irreversible Network IV showed quick gap closure as well but only partial crack disappearance. Besides, the coating with the reversible Network II based on the DA reaction not only presented good self-healing capability but also possessed the satisfied mechanical properties and the best electrochemical corrosion property, ensuring its further exploitation and potential practical applications

    Microstructural Properties of Cement Paste and Mortar Modified by Low Cost Nanoplatelets Sourced from Natural Materials

    No full text
    Nanomaterials have been widely used in cement-based materials. Graphene has excellent properties for improving the durability of cement-based materials. Given its high production budget, it has limited its wide potential for application in the field of engineering. Hence, it is very meaningful to obtain low cost nanoplatelets from natural materials that can replace graphene nanoplatelets (GNPs) The purpose of this paper is to improve the resistance to chloride ion penetration by optimizing the pore structure of cement-based materials, and another point is to reduce investment costs. The results illustrated that low cost CaCO3 nanoplatelets (CCNPs) were successfully obtained under alkali treatment of seashell powder, and the chloride ion permeability of cement-based materials significantly decreased by 15.7% compared to that of the control samples when CCNPs were incorporated. Furthermore, the compressive strength of cement pastes at the age of 28 days increased by 37.9% than that of the plain sample. Improvement of performance of cement-based materials can be partly attributed to the refinement of the pore structure. In addition, AFM was employed to characterize the nanoplatelet thickness of CCNPs and the pore structures of the cement-based composites were analyzed by MIP, respectively. CCNPs composite cement best performance could lay the foundation for further study of the durability of cement-based materials and the application of decontaminated seashells

    MOLTEN SALT SYNTHESIS OF YF

    No full text

    Strength development and microstructure of hardened cement paste blended with red mud

    No full text

    Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization

    No full text
    Shape-memory polymers (SMPs) selectively induced by near-infrared lights of 980 or 808 nm were synthesized via free radical copolymerization. Methyl methacrylate (MMA) monomer, ethylene glycol dimethylacrylate (EGDMA) as a cross-linker, and organic complexes of Yb(TTA)2AAPhen or Nd(TTA)2AAPhen containing a reactive ligand of acrylic acid (AA) were copolymerized in situ. The dispersion of the organic complexes in the copolymer matrix was highly improved, while the transparency of the copolymers was negligibly influenced in comparison with the pristine cross-linked PMMA. In addition, the thermal resistance of the copolymers was enhanced with the complex loading, while their glass transition temperature, cross-linking level, and mechanical properties were to some extent reduced. Yb(TTA)2AAPhen and Nd(TTA)2AAPhen provided the prepared copolymers with selective photothermal effects and shape-memory functions for 980 and 808 nm NIR lights, respectively. Finally, smart optical devices which exhibited localized transparency or diffraction evolution procedures were demonstrated based on the prepared copolymers, owing to the combination of good transparency and selective light wavelength responsivity

    Near-Infrared Light and Solar Light Activated Self-Healing Epoxy Coating having Enhanced Properties Using MXene Flakes as Multifunctional Fillers

    No full text
    Two issues are required to be solved to bring intrinsically self-healing polymer coatings into real applications: remote activation and satisfied practical properties. Here, we used MXene, a newly reported two-dimensional material, to provide an epoxy coating with light-induced self-healing capabilities and we worked to enhance the properties of that coating. The self-healing coatings had a reversible crosslinking network based on the Diels-Alder reaction among maleimide groups from bis(4-maleimidopheny)methane and dangling furan groups in oligomers that were prepared through the condensation polymerization of diglycidylether of bisphenol A and furfurylamine. The results showed that the delaminated MXene flakes were small in size, around 900 nm, and dispersed well in self-healing coatings. The MXene flakes of only 2.80 wt % improved greatly the pencil hardness of the coating hardness from HB to 5H and the polarization resistance from 4.3 to 428.3 MΩ cm−2. The self-healing behavior, however, was retarded by MXene flakes. Leveling agent acted a key part here to facilitate the gap closure driven by reverse plasticity to compensate for the limitation of macromolecular mobility resulting from the MXene flakes. The self-healing of coatings was achieved in 30 s by thermal treatment at 150 °C. The efficient self-healing was also demonstrated based on the recovery of the anti-corrosion capability. MXene flakes also played an evident photothermal role in generating heat via irradiation of near-infrared light at 808 nm and focused sunlight. The healing can be quickly obtained in 10 s under irradiation of near-infrared light at 808 nm having a power density of 6.28 W cm−2 or in 10 min under irradiation of focused sunlight having a power density of 4.0 W cm−2

    A Pragmatic Bilayer Selective Emitter for Efficient Radiative Cooling under Direct Sunlight

    No full text
    Radiative cooling can make the selective emitter cool below ambient temperature without any external energy. Recent advances in photonic crystal and metamaterial technology made a high-efficiency selective emitter achievable by precisely controlling the emitter’s Infrared emission spectrum. However, the high cost of the photonic crystals and meta-materials limit their application. Herein, an efficient bilayer selective emitter is prepared based on the molecular vibrations of functional nanoparticles. By optimizing the volume fraction of the functional nanoparticles, the bilayer selective emitter can theoretically cool 36.7 °C and 25.5 °C below the ambient temperature in the nighttime and daytime, respectively. Such an efficient cooling performance is comparable with the published photonic crystal and metamaterial selective emitters. The rooftop measurements show that the bilayer selective emitter is effective in the ambient air even under direct sunlight. The relatively low cost and excellent cooling performance enable the bilayer selective emitter to have great potential for a practical purpose

    A Pragmatic and High-Performance Radiative Cooling Coating with Near-Ideal Selective Emissive Spectrum for Passive Cooling

    No full text
    Radiative cooling is a passive cooling technology that can cool a space without any external energy by reflecting sunlight and radiating heat to the universe. Current reported radiative cooling techniques can present good outside test results, however, manufacturing an efficient radiative material which can be applied to the market for large-scale application is still a huge challenge. Here, an effective radiative cooling coating with a near-ideal selective emissive spectrum is prepared based on the molecular vibrations of SiOx, mica, rare earth silicate, and molybdate functional nanoparticles. The radiative cooling coating can theoretically cool 45 °C below the ambient temperature in the nighttime. Polyethylene terephthalate (PET) aluminized film was selected as the coating substrate for its flexibility, low cost, and extensive production. As opposed to the usual investigations that measure the substrate temperature, the radiative cooling coating was made into a cubic box to test its space cooling performance on a rooftop. Results showed that a temperature reduction of 4 ± 0.5 °C was obtained in the nighttime and 1 ± 0.2 °C was achieved in the daytime. Furthermore, the radiative cooling coating is resistant to weathering, fouling, and ultraviolet radiation, and is capable of self-cleaning due to its hydrophobicity. This practical coating may have a significant impact on global energy consumption

    Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell

    Get PDF
    In this work, a spherical nano core-shell material was constructed by encapsulating Fe3O4 microsphere into conductive polymer-metal composite shell. The Fe3O4 microspheres were fabricated by assembling large amounts of Fe3O4 nano-crystals, which endowed the microspheres with super-paramagnetic property and high saturation magnetization. The polymer-metal composite shell was constructed by inserting Pt nano-particles (NPs) into the conductive polymer polypyrrole (PPy). As size and dispersion of the Pt NPs has an important influence on their surface area and surface energy, it was effective to enlarge the interface area between PPy and Pt NPs, enhance the electron transfer efficiency of PPy/Pt composite shell, and reinforced the shell’s structural stability just by tuning the size and dispersion of Pt NPs. Moreover, core-shell structure of the materials made it convenient to investigate the PPy/Pt shell’s shielding effect on the Fe3O4 core’s magnetic response to external magnetic fields. It was found that the saturation magnetization of Fe3O4/PPy/Pt core-shell material could be reduced by 20.5% by regulating the conductivity of the PPy/Pt shell. Keywords: Super-paramagnetic, Conductivity, Magnetic shielding, Structural stabilit
    • …
    corecore