4 research outputs found

    Plant Diversity along the Eastern and Western Slopes of Baima Snow Mountain, China

    No full text
    Species richness and turnover rates differed between the western and eastern aspects of Baima Snow Mountain: maximum species richness (94 species in a transect of 1000 m2) was recorded at 2800 m on the western aspect and at 3400 m on the eastern aspect (126 species), which also recorded a much higher value of gamma diversity (501 species) than the western aspect (300 species). The turnover rates were the highest in the transition zones between different vegetation types, whereas species-area curves showed larger within-transect beta diversity at middle elevations. The effect of elevation on alpha diversity was due mainly to the differences in seasonal temperature and moisture, and these environmental factors mattered more than spatial distances to the turnover rates along the elevation gradient, although the impact of the environmental factors differed with the growth form (herb, shrubs or trees) of the species. The differences in the patterns of plant biodiversity between the two aspects helped to assess several hypotheses that seek to explain such patterns, to highlight the impacts of contemporary climate and historical and regional factors and to plan biological conservation and forest management in this region more scientifically

    The Joint Contributions of Environmental Filtering and Spatial Processes to Macroinvertebrate Metacommunity Dynamics in the Alpine Stream Environment of Baima Snow Mountain, Southwest China

    No full text
    While macroinvertebrates are extensively investigated in many river ecosystems, meta-community ecology perspectives in alpine streams are very limited. We assessed the role of ecological factors and temporal dynamics in the macroinvertebrate meta-community assembly of an alpine stream situated in a dry-hot valley of Baima Snow Mountain, China. We found that spatial structuring and environmental filtering jointly drive the structure of macroinvertebrate meta-community, with relative contributions to the variance in community composition changing over time. RDA ordination and variation partitioning indicate that environmental variables are the most important predictors of community organization in most scenarios, whereas spatial determinants also play a significant role. Moreover, the explanatory power, identity, and the relative significance of ecological factors change over time. Particularly, in the years 2018 and 2019, stronger environmental filtering was found shaping community assembly, suggesting that deterministic mechanisms predominated in driving community dynamics. However, spatial factors had a stronger predictive power on meta-community structures in 2017, implying conspicuous dispersal mechanisms which may be owing to increased connectivity amongst sites. Thereby, we inferred that the alpine stream macroinvertebrate metacommunity composition can be regulated by the interaction of both spatial processes and environmental filtering, with relative contributions varying over time. Based on these findings, we suggest that community ecology studies in aquatic systems should be designed beyond single snapshot investigations
    corecore