194 research outputs found

    In-situ TEM study of the aging micromechanisms in a BaTiO3-based lead-free piezoelectric ceramic

    Get PDF
    Aging and fatigue are the two main concerns regarding the performance reliability of piezoelectric ceramics. Compared with fatigue, less efforts have been made towards clarifying the micromechanisms of aging. In this report, we employ electric field in-situ transmission electron microscopy (TEM) to directly visualize the domain structure evolution during fatigue and the subsequent aging process in the 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–BCT) polycrystalline ceramic. The macroscopic aging behaviors, including the development of internal bias field (Ebias) and the degradation in switchable polarization (2Pr), are correlated with the microscopic domain wall clamping and domain disruption resulted from the redistribution of oxygen vacancies driven by depolarization field

    Insights into performance stability of lead-free piezoelectric ceramics

    Get PDF
    Developing materials with superior functional properties is the primary goal of materials engineering. Nonetheless, the stability of performance during practical service should be of equal importance. This is, with no doubt, also true for piezoelectric materials. The working conditions of piezoelectric materials can lead to either gradual or abrupt degradation in their functional properties. First, fatigue. In analogy to structural materials under cyclic stresses, the piezoelectric properties deteriorate during the electric field cycling. Second, aging. While the service is paused and the piezoelectric material is sitting idle, the piezoelectric properties will decay over time. Third, thermal depolarization. Electronic devices are not necessarily working at room temperature. The piezoelectric properties may fluctuate with temperature change, or even vanish above a threshold value. These three major forms of performance instability of piezoelectric materials have been studied for decades. Exploring the microstructural origins can help to find approaches to mitigate the degradation. The current dissertation aims to investigate the micromechanisms of electric fatigue, polarization aging, and thermal depolarization in lead-free piezoelectric ceramics. Electric field in-situ transmission electron microscopy (TEM) is utilized to directly monitor the microstructure evolution during electric cycling, aging, and temperature rise

    Large electrocaloric responses in [Bi1/2(Na,K)1/2]TiO3‐based ceramics with giant electro‐strains

    Get PDF
    The electrocaloric effect (ECE) is investigated through indirect measurement in two lead‐free [Bi1/2(Na,K)1/2]TiO3‐based ceramics that were previously reported to display giant electro‐strains. In the Nb‐doped ceramic, denoted as BNKT‐2.5Nb, a decent temperature change of ΔT=1.85 K and an electrocaloric responsivity of ΔT/ΔE=0.37 (10−6Km V−1) are found around room temperature (32°C). While in the Ta‐doped ceramic, BNKT‐1.5Ta, a wide operation temperature range (Tspan ~55 K) is observed near room temperature. Additional electrical measurements, as well as transmission electron microscopy experiments, are performed to identify the mechanisms of the ECE in both ceramics

    The Potential Roles of Long Noncoding RNAs (lncRNA) in Glioblastoma Development

    Get PDF
    Long noncoding RNA (lncRNA) may contribute to the initiation and progression of tumor. In this study, we first systematically compared lncRNA and mRNA expression between glioblastoma and paired normal brain tissues using microarray data. We found 27 lncRNA and 82 mRNA significantly upregulated in glioblastoma, as well as 198 lncRNA and 285 mRNA significantly downregulated in glioblastoma. We identified 138 coexpressed lncRNA–mRNA pairs from these differentially expressed lncRNA and genes. Subsequent pathway analysis of the lncRNA-paired genes indicated that EphrinB–EPHB, p75-mediated signaling, TNFα/NF-ÎșB, and ErbB2/ErbB3 signaling pathways might be altered in glioblastoma. Specifically, lncRNA RAMP2-AS1 had significant decrease of expression in glioblastoma tissues and showed coexpressional relationship with NOTCH3, an important tumor promoter in many neoplastic diseases. Our follow up experiment indicated that (i) an overexpression of RAMP2-AS1 reduced glioblastoma cell proliferation in vitro and also reduced glioblastoma xenograft tumors in vivo; (ii) NOTCH3 and RAMP2-AS1 coexpression rescued the inhibitory action of RAMP2-AS1 in glioblastoma cells; and (iii) RNA pull-down assay revealed a direct interaction of RAMP2-AS1 with DHC10, which may consequently inhibit, as we hypothesize, the expression of NOTCH3 and its downstream signaling molecule HES1 in glioblastoma. Taken together, our data revealed that lncRNA expression profile in glioblastoma tissue was significantly altered; and RAMP2-AS1 might play a tumor suppressive role in glioblastoma through an indirect inhibition of NOTCH3. Our results provided some insights into understanding the key roles of lncRNA–mRNA coregulation in human glioblastoma and the mechanisms responsible for glioblastoma progression and pathogenesis. Mol Cancer Ther; 15(12); 2977–86. ©2016 AACR

    Enzalutamide-Induced Signatures Revealed by Epigenetic Plasticity Using Single-Cell Multi-Omics Sequencing in Prostate Cancer

    Get PDF
    Prostate cancer is morphologically and molecularly heterogeneous, which poses obstacles for early diagnosis and treatment. Advancements in understanding the heterogeneity of prostate cancer will help navigate through these challenges and ultimately benefit patients. In this study, we integrated single-cell sequencing for transposase-accessible chromatin and whole transcriptome in prostate cancer cell lines, aiming to decode the epigenetic plasticity upon enzalutamide (ENZ) treatment. By comparing the cell populations representing early-treatment response or resistance to the initial tumor cells, we identified seven signature gene sets; they present consistent trends of chromatin closing co-occurred with down-regulated genes during early response and chromatin opening with up-regulated genes upon maintaining drug resistance. In the molecular signatures, we found gene

    Investigating Cellular Heterogeneity at the Single-Cell Level by the Flexible and Mobile Extrachromosomal Circular DNA

    Get PDF
    Extrachromosomal circular DNA (eccDNA) is a special class of DNA derived from linear chromosomes. It coexists independently with linear chromosomes in the nucleus. eccDNA has been identified in multiple organisms, including Homo sapiens, and has been shown to play important roles relevant to tumor progression and drug resistance. To date, computational tools developed for eccDNA detection are only applicable to bulk tissue. Investigating eccDNA at the single-cell level using a computational approach will elucidate the heterogeneous and cell-type-specific landscape of eccDNA within cellular context. Here, we performed the first eccDNA analysis at the single-cell level using data generated by single-cell Assay for Transposase-Accessible Chromatin with sequencing (scATAC-seq) in adult and pediatric glioblastoma (GBM) samples. Glioblastoma multiforme (GBM) is an aggressive tumor of the central nervous system with a poor prognosis. Our analysis provides an overview of cellular origins, genomic distribution, as well as the differential regulations between linear and circular genome under disease- and cell-type-specific conditions across the open chromatin regions in GBM. We focused on some eccDNA elements that are potential mobile enhancers acting in a trans-regulation manner. In summary, this pilot study revealed novel eccDNA features in the cellular context of brain tumor, supporting the strong need for eccDNA investigation at the single-cell level

    The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3

    Get PDF
    K0.5Na0.5NbO3 (KNN) can be readily densified using the cold sintering process, but despite observing high relative permittivity, the ferroelectric hysteresis is strongly suppressed along with a major suppression in the all-important piezoelectric properties. In this study, KNN is fabricated using a NaOH+KOH transient flux under a uniaxial pressure of 400 MPa and heating to 300 °C for 2 h to drive densification to 93% theoretical. It is only after a secondary heat treatment that we observe improvements of the ferroelectric hysteresis and piezoelectric properties. From a detailed structural-property-processing study using analytical transmission electron microscopy (TEM), X-ray line broadening and high field dielectric characterization methodologies we conclude that there is an unusual in-situ plastic deformation process that takes place in addition to the densification under the cold sintering process. High densities of dislocations within grains were observed that lead to multiple pinning sites that impact both the intrinsic and extrinsic contributions to the high field dielectric and piezoelectric properties. Annealing significantly reduced the dislocation density in the highly defective crystallites, observed directly from the TEM and from the sharpening of the X-ray diffraction peaks, resulting in piezoelectric and ferroelectric properties that approached those of conventionally sintered KNN

    The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3

    Get PDF
    K0.5Na0.5NbO3 (KNN) can be readily densified using the cold sintering process, but despite observing high relative permittivity, the ferroelectric hysteresis is strongly suppressed along with a major suppression in the all-important piezoelectric properties. In this study, KNN is fabricated using a NaOH+KOH transient flux under a uniaxial pressure of 400 MPa and heating to 300 °C for 2 h to drive densification to 93% theoretical. It is only after a secondary heat treatment that we observe improvements of the ferroelectric hysteresis and piezoelectric properties. From a detailed structural-property-processing study using analytical transmission electron microscopy (TEM), X-ray line broadening and high field dielectric characterization methodologies we conclude that there is an unusual in-situ plastic deformation process that takes place in addition to the densification under the cold sintering process. High densities of dislocations within grains were observed that lead to multiple pinning sites that impact both the intrinsic and extrinsic contributions to the high field dielectric and piezoelectric properties. Annealing significantly reduced the dislocation density in the highly defective crystallites, observed directly from the TEM and from the sharpening of the X-ray diffraction peaks, resulting in piezoelectric and ferroelectric properties that approached those of conventionally sintered KNN
    • 

    corecore