179 research outputs found

    Insights into performance stability of lead-free piezoelectric ceramics

    Get PDF
    Developing materials with superior functional properties is the primary goal of materials engineering. Nonetheless, the stability of performance during practical service should be of equal importance. This is, with no doubt, also true for piezoelectric materials. The working conditions of piezoelectric materials can lead to either gradual or abrupt degradation in their functional properties. First, fatigue. In analogy to structural materials under cyclic stresses, the piezoelectric properties deteriorate during the electric field cycling. Second, aging. While the service is paused and the piezoelectric material is sitting idle, the piezoelectric properties will decay over time. Third, thermal depolarization. Electronic devices are not necessarily working at room temperature. The piezoelectric properties may fluctuate with temperature change, or even vanish above a threshold value. These three major forms of performance instability of piezoelectric materials have been studied for decades. Exploring the microstructural origins can help to find approaches to mitigate the degradation. The current dissertation aims to investigate the micromechanisms of electric fatigue, polarization aging, and thermal depolarization in lead-free piezoelectric ceramics. Electric field in-situ transmission electron microscopy (TEM) is utilized to directly monitor the microstructure evolution during electric cycling, aging, and temperature rise

    The Potential Roles of Long Noncoding RNAs (lncRNA) in Glioblastoma Development

    Get PDF
    Long noncoding RNA (lncRNA) may contribute to the initiation and progression of tumor. In this study, we first systematically compared lncRNA and mRNA expression between glioblastoma and paired normal brain tissues using microarray data. We found 27 lncRNA and 82 mRNA significantly upregulated in glioblastoma, as well as 198 lncRNA and 285 mRNA significantly downregulated in glioblastoma. We identified 138 coexpressed lncRNA–mRNA pairs from these differentially expressed lncRNA and genes. Subsequent pathway analysis of the lncRNA-paired genes indicated that EphrinB–EPHB, p75-mediated signaling, TNFα/NF-κB, and ErbB2/ErbB3 signaling pathways might be altered in glioblastoma. Specifically, lncRNA RAMP2-AS1 had significant decrease of expression in glioblastoma tissues and showed coexpressional relationship with NOTCH3, an important tumor promoter in many neoplastic diseases. Our follow up experiment indicated that (i) an overexpression of RAMP2-AS1 reduced glioblastoma cell proliferation in vitro and also reduced glioblastoma xenograft tumors in vivo; (ii) NOTCH3 and RAMP2-AS1 coexpression rescued the inhibitory action of RAMP2-AS1 in glioblastoma cells; and (iii) RNA pull-down assay revealed a direct interaction of RAMP2-AS1 with DHC10, which may consequently inhibit, as we hypothesize, the expression of NOTCH3 and its downstream signaling molecule HES1 in glioblastoma. Taken together, our data revealed that lncRNA expression profile in glioblastoma tissue was significantly altered; and RAMP2-AS1 might play a tumor suppressive role in glioblastoma through an indirect inhibition of NOTCH3. Our results provided some insights into understanding the key roles of lncRNA–mRNA coregulation in human glioblastoma and the mechanisms responsible for glioblastoma progression and pathogenesis. Mol Cancer Ther; 15(12); 2977–86. ©2016 AACR

    The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3

    Get PDF
    K0.5Na0.5NbO3 (KNN) can be readily densified using the cold sintering process, but despite observing high relative permittivity, the ferroelectric hysteresis is strongly suppressed along with a major suppression in the all-important piezoelectric properties. In this study, KNN is fabricated using a NaOH+KOH transient flux under a uniaxial pressure of 400 MPa and heating to 300 °C for 2 h to drive densification to 93% theoretical. It is only after a secondary heat treatment that we observe improvements of the ferroelectric hysteresis and piezoelectric properties. From a detailed structural-property-processing study using analytical transmission electron microscopy (TEM), X-ray line broadening and high field dielectric characterization methodologies we conclude that there is an unusual in-situ plastic deformation process that takes place in addition to the densification under the cold sintering process. High densities of dislocations within grains were observed that lead to multiple pinning sites that impact both the intrinsic and extrinsic contributions to the high field dielectric and piezoelectric properties. Annealing significantly reduced the dislocation density in the highly defective crystallites, observed directly from the TEM and from the sharpening of the X-ray diffraction peaks, resulting in piezoelectric and ferroelectric properties that approached those of conventionally sintered KNN

    The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3

    Get PDF
    K0.5Na0.5NbO3 (KNN) can be readily densified using the cold sintering process, but despite observing high relative permittivity, the ferroelectric hysteresis is strongly suppressed along with a major suppression in the all-important piezoelectric properties. In this study, KNN is fabricated using a NaOH+KOH transient flux under a uniaxial pressure of 400 MPa and heating to 300 °C for 2 h to drive densification to 93% theoretical. It is only after a secondary heat treatment that we observe improvements of the ferroelectric hysteresis and piezoelectric properties. From a detailed structural-property-processing study using analytical transmission electron microscopy (TEM), X-ray line broadening and high field dielectric characterization methodologies we conclude that there is an unusual in-situ plastic deformation process that takes place in addition to the densification under the cold sintering process. High densities of dislocations within grains were observed that lead to multiple pinning sites that impact both the intrinsic and extrinsic contributions to the high field dielectric and piezoelectric properties. Annealing significantly reduced the dislocation density in the highly defective crystallites, observed directly from the TEM and from the sharpening of the X-ray diffraction peaks, resulting in piezoelectric and ferroelectric properties that approached those of conventionally sintered KNN

    Mechanisms of Enhanced Thermal Stability of Polarization in Lead-Free (Bi 1/2Na 1/2) 0.94Ba 0.06TiO 3/ZnO Ceramic Composites

    Get PDF
    (Bi 1/2Na 1/2)TiO 3-based solid solutions, one of the major systems of lead-free piezoelectric ceramics, exhibit a low thermal depolarization temperature ( T d~100°C). It was reported that by incorporating 30 mol% ZnO particles to form a ceramic composite of (Bi 1/2Na 1/2) 0.94Ba 0.06TiO 3/ZnO, the depolarization process can be shifted up to ~250 °C. In the present work, a variety of advanced transmission electron microscopy techniques, including in situ heating, annular bright-field, high-angle annular dark-field, geometric phase analysis, energy-dispersive spectrum and electron energy-loss spectroscopy, are employed to investigate the underlying mechanisms for the enhanced thermal stability of polarization in the composite. Furthermore, it is found that the abrupt depolarization in (Bi 1/2Na 1/2) 0.94Ba 0.06TiO 3 at T d becomes diffused over a wide temperature window up to the temperature at maximum dielectric constant ( T m) under the combined actions of the incorporation of Zn into the perovskite lattice, the presence of residual stresses, and the pinning effect on micron-sized domains provided by ZnO particles

    One Neuron Saved Is One Neuron Earned: On Parametric Efficiency of Quadratic Networks

    Full text link
    Inspired by neuronal diversity in the biological neural system, a plethora of studies proposed to design novel types of artificial neurons and introduce neuronal diversity into artificial neural networks. Recently proposed quadratic neuron, which replaces the inner-product operation in conventional neurons with a quadratic one, have achieved great success in many essential tasks. Despite the promising results of quadratic neurons, there is still an unresolved issue: \textit{Is the superior performance of quadratic networks simply due to the increased parameters or due to the intrinsic expressive capability?} Without clarifying this issue, the performance of quadratic networks is always suspicious. Additionally, resolving this issue is reduced to finding killer applications of quadratic networks. In this paper, with theoretical and empirical studies, we show that quadratic networks enjoy parametric efficiency, thereby confirming that the superior performance of quadratic networks is due to the intrinsic expressive capability. This intrinsic expressive ability comes from that quadratic neurons can easily represent nonlinear interaction, while it is hard for conventional neurons. Theoretically, we derive the approximation efficiency of the quadratic network over conventional ones in terms of real space and manifolds. Moreover, from the perspective of the Barron space, we demonstrate that there exists a functional space whose functions can be approximated by quadratic networks in a dimension-free error, but the approximation error of conventional networks is dependent on dimensions. Empirically, experimental results on synthetic data, classic benchmarks, and real-world applications show that quadratic models broadly enjoy parametric efficiency, and the gain of efficiency depends on the task.Comment: We have shared our code in https://github.com/asdvfghg/quadratic_efficienc
    • …
    corecore