24 research outputs found

    Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity

    Get PDF
    A novel phage, Φ241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH ≤ 3.7) and salinity (≥5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7) or the 2 O antigen-negative mutants of O157:H7 strain, 43895Δper (also lacking H7 antigen) and F12 (still expressing H7 antigen). However, the phage was able to lyse a per-complemented strain (43895ΔperComp) which expresses O157 antigen. These results indicated that phage Φ241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3, or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage Φ241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment

    Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus

    Get PDF
    Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural green foods. Allyl isothiocyanate (AITC) is an antimicrobial compound naturally present in wasabi (Japanese horseradish) and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil) against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E. coli O157:H7 and S. aureus. Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91±0.59 mg/g. The minimum inhibitory concentration (MIC) of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml). Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 µg/ml. AITC at 500 µg/ml was bactericidal against both pathogens while AITC at 1000 µg/ml eliminated E. coli O157:H7 much faster than S. aureus. The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi against other foodborne pathogens and to explore other edible plants for their antimicrobial properties. To our knowledge, this is the first report on the antibacterial activity of wasabi in its natural form of consumption against E. coli O157:H7 and S. aureus

    Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl

    No full text
    Limited documentation of the cucumber fermentation microbiome has impeded the understanding of the role of microbes on the quality of finished products. We characterized the microbiome of fresh and fermented cucumber samples using culture dependent and independent techniques, with an emphasis on the non-lactic acid bacteria (non-LAB) population. Insubstantial microbiome variations were observed among fresh cucumber types with Rhizobium (31.04%), Pseudomonas (14.08%), Pantoea (9.25%), Stenotrophomonas (6.83%), and Acinetobacter (6.5%) prevailing. The relative abundance of LAB remained below 0.4% and 4.0% on fresh cucumbers and day 3 of the fermentations brined with 6% sodium chloride, respectively. Fermentation cover brine samples collected on day 1 harbored Pseudomonas, Pantoea, Stenotrophomonas, Acinetobacter, Comamonas, Wautersiella, Microbacterium, Flavobacterium, Ochrobactrum and the Enterobacteriaceae, Citrobacter, Enterobacter and Kluyvera. Plate counts for presumptive Klebsiella and Pseudomonas from fermentation cover brine samples reached 2.80 ± 0.36 and 2.78 ± 0.83 log of CFU/mL, respectively, in 30% and 60% of the nine tanks scrutinized with selective media. Both genera were found in cover brine samples with pH values at 4.04 ± 0.15. We aim at elucidating whether the low relative abundance of non-LAB in commercial cucumber fermentations, in particular Pseudomonas and Enterobacteriaceae, impacts the quality of fermented cucumbers

    Different Expression Pattern of G Protein-Coupled Estrogen Receptor GPER1 in Esophageal Squamous Cell Carcinoma and Adenocarcinoma

    No full text
    Esophageal carcinoma is a male-dominant malignancy worldwide, and esophageal adenocarcinoma (EAC) shows more significant sex bias than esophageal squamous cell carcinoma (ESCC) in morbidity and mortality. The G protein-coupled estrogen receptor 1 (GPER1) is involved in several sex-related cancers; however, its expression level in esophageal carcinoma has been poorly investigated and its role is not precisely defined, depending on histological types. In the present study, the mRNA levels of GPER1 in esophageal carcinoma were collected from GEPIA and Oncomine databases for meta-analyses. The protein expression levels of GPER1 were detected by immunohistochemistry in the tissue microarray of EAC and ESCC. The GPER1 selective agonist G1, antagonist G15, and siRNA were applied in vitro to investigate their impacts on esophageal cell lines. Analysis of the RNA levels from the databases showed a decreased expression of GPER1 in overall esophageal carcinoma, and low expression levels of GPER1 were found to be associated with low survival of tumor patients. However, in the subgroup of EAC and its precancerous lesion, Barrett’s esophagus, overexpression of GPER1 RNA was increased when compared with the normal tissues. The average staining scores of GPER1 protein in the tissue microarray of EAC were significantly higher than normal esophageal samples, and the rate of positive staining increased with the grade of poor tumor differentiation. The scores of GPER1 protein in ESCC tissues were lower than those in the normal tissues. The results from cell line experiments in vitro showed that the GPER1 agonist G1 inhibited proliferation and promoted apoptosis of ESCC cells EC109 with positive expression of GPER1. G1 had no obvious effect on normal esophageal NE2 cells with weak expression of GPER1. In addition, GPER1 RNA knockdown and application of antagonist G15 reversed the effects of G1 on EC109. The results of this study indicate that the expression levels of GPER1 are higher in EAC than in ESCC, which might be correlated with the dimorphic estrogen signaling pathway in different types of esophageal carcinoma

    Cross-Subtype T-Cell Immune Responses Induced by a Human Immunodeficiency Virus Type 1 Group M Consensus Env Immunogen†0--

    Get PDF
    The genetic diversity among globally circulating human immunodeficiency virus type 1 (HIV-1) strains is a serious challenge for HIV-1 vaccine design. We have generated a synthetic groupMconsensus env gene (CON6) for induction of cross-subtype immune responses and report here a comparative study of T-cell responses to this and natural strain env immunogens in a murine model. Three different strains of mice were immunized with CON6 as well as subtype A, B, or C env immunogens, using a DNA prime-recombinant vaccinia virus boost strategy. T-cell epitopes were mapped by gamma interferon enzyme-linked immunospot analysis using five overlapping Env peptide sets from heterologous subtype A, B, and C viruses. The CON6-derived vaccine was immunogenic and induced a greater number of T-cell epitope responses than any single wild-type subtype A, B, and C env immunogen and similar T-cell responses to a polyvalent vaccine. The responses were comparable to within-clade responses but significantly more than between-clade responses. The magnitude of the T-cell responses induced by CON6 (measured by individual epitope peptides) was also greater than the magnitude of responses induced by individual wild-type env immunogens. Though the limited major histocompatibility complex repertoire in inbred mice does not necessarily predict responses in nonhuman primates and humans, these results suggest that synthetic centralized env immunogens represent a promising approach for HIV-1 vaccine design that merits further characterization

    Exendin-4 ameliorates tau hyperphosphorylation and cognitive impairment in type 2 diabetes through acting on Wnt/β-catenin/NeuroD1 pathway

    No full text
    Abstract Background  Type 2 diabetes (T2D) is an independent risk factor for Alzheimer's disease (AD). Exendin-4 (Ex-4), a widely used glucagon-like peptide-1 receptor agonist drug in the treatment of T2D, has been demonstrated the therapeutic effects on diabetic encephalopathy (DE). Especially, the Ex-4 ameliorates the tau hyperphosphorylation and cognitive impairment in DE. And these crucial alterations are also important bridge between T2D and AD. However, its unique mechanism is unclear. Methods  The db/db mice, high-fat-diet (HFD) / streptozotocin (STZ)—induced diabetic (HF-diabetic) mice, and high-glucose-damaged (HGD) HT-22 hippocampal cells were enrolled to examine the effects of Ex-4 on AD-like changes in T2D. The Novel object recognition test (NORT) and Morris water maze test (MWMT) were conducted to evaluate the cognitive impairment. The Dickkopf-1 (DKK1) was employed to weaken the activation of the Wnt/β-catenin pathway to explore the mechanism of Ex-4 in protecting the brain functions. The JASPAR was based to predict the interaction between NeuroD1 and the promoter region of Ins2. Moreover, the chromatin immunoprecipitation coupled with quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter assays were performed. Results  Ex-4 alleviated the tau hyperphosphorylation, increased the brain-derived insulin, and improved the PI3K/AKT/GSK3-β signalling in db/db mice, HF-diabetic mice, and HGD HT-22 hippocampal neuronal cells. The NORT and MWMT indicated that Ex-4 alleviated the learning and memory deficits in HF-diabetic mice. The inhibitor Dickkopf-1 (DKK1) of the Wnt/β-catenin pathway significantly blocked the protective effects of Ex-4. Regarding further molecular mechanisms, NeuroD1 was affected by Ex-4 in vivo and in vitro, and the knockdown or overexpression of NeuroD1 suggested its crucial role in promoting the brain insulin by Ex-4. Meanwhile, the ChIP‒qPCR and luciferase reporter assays confirmed the combination between NeuroD1 and the promoter region of the insulin-encoding gene Ins2. And this interaction could be promoted by Ex-4. Conclusions Our study proposes that Ex-4 alleviates tau hyperphosphorylation and cognitive dysfunction by increasing Ins2-derived brain insulin through the Wnt/β-catenin/NeuroD1 signaling in T2D. And its also show new lights on part of the progress and mechanism on treatment targets for the DE in T2D

    Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl

    No full text
    52 Páginas; 6 Tablas; 4 FigurasLimited documentation of the cucumber fermentation microbiome has impeded the understanding of the role of microbes on the quality of finished products. We characterized the microbiome of fresh and fermented cucumber samples using culture dependent and independent techniques, with an emphasis on the non-lactic acid bacteria (non-LAB) population. Insubstantial microbiome variations were observed among fresh cucumber types with Rhizobium (31.04%), Pseudomonas (14.08%), Pantoea (9.25%), Stenotrophomonas (6.83%), and Acinetobacter (6.5%) prevailing. The relative abundance of LAB remained below 0.4% and 4.0% on fresh cucumbers and day 3 of the fermentations brined with 6% sodium chloride, respectively. Fermentation cover brine samples collected on day 1 harbored Pseudomonas, Pantoea, Stenotrophomonas, Acinetobacter, Comamonas, Wautersiella, Microbacterium, Flavobacterium, Ochrobactrum and the Enterobacteriaceae, Citrobacter, Enterobacter and Kluyvera. Plate counts for presumptive Klebsiella and Pseudomonas from fermentation cover brine samples reached 2.80 ± 0.36 and 2.78 ± 0.83 log of CFU/mL, respectively, in 30% and 60% of the nine tanks scrutinized with selective media. Both genera were found in cover brine samples with pH values at 4.04 ± 0.15. We aim at elucidating whether the low relative abundance of non-LAB in commercial cucumber fermentations, in particular Pseudomonas and Enterobacteriaceae, impacts the quality of fermented cucumbers.The authors thank Ms. Sandra Parker with the USDA-ARS Food Science Research Unit located in Raleigh, NC for administrative support. The authors also thank the Spanish Government (MECD) for the postdoctoral fellowship support for Dr. E. Medina. The authors thank AthoGen located in Carlsbad, CA, USA for the Rapid Research Acceleration Program which partially sponsored the PCR-NMR analysis. The authors declare no conflict of interest.Peer reviewe
    corecore