20 research outputs found
Silicon photonic polarimeters and spectropolarimeters
Puisqu’ils offrent la possibilité d’intégrer monolithiquement un grand nombre de composants à un faible coût, les circuits intégrés photoniques (CIPs) sont devenus une plateforme de choix pour la réalisation de capteurs optiques sur puce. Cette thèse propose, puis démontre l’utilisation de CIPs sur silicium pour la réalisation de polarimètres et de spectro-polarimètres sur puce. Dans le premier chapitre, nous présentons un séparateur de polarisation utilisant un réseau de nano-antennes en forme d’arêtes de poisson sur silicium. Nous montrons également qu’une structure de la sorte est en mesure de séparer deux états de polarisation arbitraires qui sontorthogonaux entre-eux. De plus, nous avons amélioré le précédent modèle théorique existant pour y inclure ce phénomène. Dans le second chapitre, nous présentons et démontrons de façon expérimentale un polarimètre intégré sur silicium qui requiert 6 photodétecteurs (6-PDs). Ici, la structure optimale veut dire que, pour un niveau de bruit donné, cette structure permet d’obtenir l’état de polarisation avec la précision la plus élevée. Nous démontrons également de façon théorique que cette configuration proposée peut maintenir un état optimal sur une plage de longueur d’onde de100 nm. Dans le troisième chapitre, nous proposons une jonction en « Y » paramétrisée dont le ratio de séparation de puissance peut être choisi avant la fabrication, lors de la conception. Sur une plage de longueur d’onde de 100 nm, les pertes de puissance de la jonction sont inférieuresà 0.36 dB, et ce, pour tout ratio arbitraire de séparation de puissance. De plus, sa taille de1.4 µm × 2.3 µm le rend très compact.Au chapitre 4, nous proposons un polarimètre optimal composé de quatre photodétecteurs(4-PDs) possédant ces propriétés à partir de la jonction en « Y » proposée au chapitre 3. Un polarimètre non-optimal est fabriqué de manière à montrer la différence entre celui-ci et le cas optimal. Les résultats expérimentaux montrent que l’erreur de reconstruction du composant optimal est inférieure de 44 % à celle du composant non-optimal.Dans le cinquième chapitre, nous proposons et faisons la démonstration d’un spectro- polarimètre réalisé intégralement sur puce. Afin de permettre une analyse spectro-polarimétrique iiicomplete, quatre micro-résonateurs à effet Vernier compacts sont intégrés monolithiquement avec un polarimètre large-bande. Le composant optique proposé offre une solution de spectropolarimétrie sur semi-conducteur tout en gardant une taille très compacte de 1 × 0.6 mm2et une faible consommation de puissance de 360 mW. La détection spectrale pour tous les composants de Stokes est démontrée sur une large plage de longueur d’onde de 50 nm, et ce avec une résolution de 1 nm par la caractérisation d’un matériau possédant une chiralité structurelle.The ability to monolithically integrate numerous components in low-cost, photonic integratedcircuits (PICs) has become a hot topic in the research for realizing on-chip optical measurement. In this thesis, we propose and demonstrate two on-chip polarimeters and an on-chipspectropolarimeter using silicon PICs.In the first chapter, we investigate the optical properties of the silicon fishbone nanoantennaarray. We found that this type of structure can be used to identify any two arbitrary orthogonalpolarization states. The previous theoretical model was also improved upon in order to explainthis phenomenon.In the second chapter, we propose and experimentally demonstrate a silicon polarimeter whichrequires six photodetectors. We also theoretically demonstrate that the proposed configurationcan maintain an optimal state over a wavelength range of 100 nm. Here, the optimal structuremeans that for a given noise, the structure would allow for the highest and polarizationindependent accuracy of the polarization state measurement to be obtained.In the third chapter, we propose a parameterized Y-junction whose arbitrary power splittingratio can be selected in layout design. For an arbitrary power splitting ratio, its excess losscan keep below 0.36 dB over a wavelength range of 100 nm. Moreover, this device has anultra-compact footprint of 1.4 µm × 2.3 µm.Based on the Y-junction proposed in chapter 3, the fourth chapter proposes an optimal siliconphotonic polarimeter that only requires four photodetectors and its configuration is optimal.A non-optimal device is fabricated to show the difference between optimal and non-optimaldevices. The experimental results indicate that the reconstructed error of the optimal deviceis 44% lower than that of the nonoptimal device.In the fifth chapter, a completely chip-level spectropolarimeter is proposed. Four compactVernier microresonator spectrometers are monolithically integrated with a broadband polarimeter to achieve full-Stokes spectropolarimetric analysis. The proposed device offers asolid-state spectropolarimetry solution with a small footprint of 1 × 0.6 mm2 and low powerconsumption of 360 mW. Full-Stokes spectral detection across a broad spectral range of 50 nmwith a resolution of 1 nm is demonstrated in characterizing a material that possesses structuralvchirality
A Chip-scale, Full-Stokes Polarimeter
The polarization of light conveys unique information that can be exploited by
crucial applications. The bulky and costly discrete optical components used in
conventional polarimeters limit their broad adoption. A compact, low-cost
polarimeter would bring this functionality into a myriad of new scenarios and
revolutionize its exploitation. Here we present a high-performance, full-Stokes
polarimeter on a silicon chip. A surface polarization splitter and on-chip
optical interferometer circuit produce the analysis matrix of an optimally
conditioned polarimeter. This solid-state polarimeter is a system-on-a-chip
with exceptional compactness, stability, and speed that could be used singly or
in integrated arrays. Large arrays can increase the speed and resolution of
full-Stokes imaging; therefore, our design provides a scalable polarimeter
solution.Comment: 5 figure
Learning Deep Intensity Field for Extremely Sparse-View CBCT Reconstruction
Sparse-view cone-beam CT (CBCT) reconstruction is an important direction to
reduce radiation dose and benefit clinical applications. Previous voxel-based
generation methods represent the CT as discrete voxels, resulting in high
memory requirements and limited spatial resolution due to the use of 3D
decoders. In this paper, we formulate the CT volume as a continuous intensity
field and develop a novel DIF-Net to perform high-quality CBCT reconstruction
from extremely sparse (fewer than 10) projection views at an ultrafast speed.
The intensity field of a CT can be regarded as a continuous function of 3D
spatial points. Therefore, the reconstruction can be reformulated as regressing
the intensity value of an arbitrary 3D point from given sparse projections.
Specifically, for a point, DIF-Net extracts its view-specific features from
different 2D projection views. These features are subsequently aggregated by a
fusion module for intensity estimation. Notably, thousands of points can be
processed in parallel to improve efficiency during training and testing. In
practice, we collect a knee CBCT dataset to train and evaluate DIF-Net.
Extensive experiments show that our approach can reconstruct CBCT with high
image quality and high spatial resolution from extremely sparse views within
1.6 seconds, significantly outperforming state-of-the-art methods. Our code
will be available at https://github.com/xmed-lab/DIF-Net.Comment: MICCAI'2
Optimal ultra-miniature polarimeters in silicon photonic integrated circuits
Measurement of the state of polarization of light is essential in a vast number of applications, such as quantum and classical communications, remote sensing, astronomy, and biomedical diagnostics. Nanophotonic structures and integrated photonic circuits can, in many circumstances, replace conventional discrete optical components for miniature polarimeters and chip-scale polarimetry systems and thus significantly improve robustness while minimizing the footprint and cost. We propose and experimentally demonstrate two silicon photonic four-photodetector (PD) division-of-amplitude polarimeters (4PD-DOAPs) using a complementary metal–oxide–semiconductor-compatible photonic fabrication process. The first design targets minimizing the number of optical components. The second design makes use of a slightly more complex circuit design to achieve an optimal frame for measurements; this measurement frame minimizes and equalizes estimation variances in the presence of the additive white Gaussian noise and the signal dependent shot noise. Further theoretical examination reveals that within the optimal measurement frames for Stokes polarimeters, the DOAP with four PDs has the minimal equally weighted variance compared to those with a greater number of PDs
On-chip circular polarization splitter using silicon photonic nanoantenna array
Control and sorting of quantum states of photons through the manipulation of polarization and spatial modes of light in integrated photonic circuits contributes important applications in optical communications and quantum-optical systems. We design and demonstrate a novel structure for a silicon nanoantenna array that can split the circular polarization states and couple them to separate single-mode silicon waveguides. Implemented using a CMOS-compatible photonic fabrication process, the array can be monolithically integrated with other photonic components for chip-scale optical signal processing. We also show that the polarization sorting property of the nanoantenna array can be flexibly controlled (by adjusting design parameters at subwavelength scale) to split any two arbitrary orthogonal polarization states
WDM-compatible polarization-diverse OAM generator and multiplexer in silicon photonics
Spatial multiplexing using orbital angular momentum (OAM) modes is an efficient means of scaling up the capacity
of fiber-optic communications systems; integrated multiplexers
are crucial enablers of this approach. OAM modes are circularly
polarized when propagating in a fiber, however, OAM generators
previously demonstrated in silicon photonics use locally linearly
polarized emitters. Coupling from multiplexers to fibers in
those solutions results in extra loss and complexity. Moreover,
many of those solutions are based on resonator structures with
strong wavelength dependence, and are thus incompatible with
wavelength-division multiplexing (WDM). We experimentally
demonstrate on-chip generation and multiplexing of OAM modes
using an array of circularly polarized 2D antennas with wide
wavelength coverage. The proposed device was implemented on
the standard 220-nm silicon-on-insulator platform. Optical vortex
beams with OAM orders ranging from -3 to +3 in both left and
right circular polarization states were generated from the same
aperture across a wavelength range of 1540 nm to 1557 nm. This
device could serve as a multiplexer or demultiplexer for up to 12
information bearing channels coupling into a
Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits
Wavelength-dependent polarization state of light carries crucial information about
light-matter interactions. However, its measurement is limited to bulky, high energy-consuming
devices, which prohibits many modern, portable applications. Here, we propose and demonstrate
a chip-scale spectropolarimeter implemented using a complementary metal oxide semiconductor
(CMOS) compatible silicon photonics technology. Four compact Vernier microresonator
spectrometers are monolithically integrated with a broadband polarimeter consisting of a 2D
nanophotonic antenna and a polarimetric circuit to achieve full-Stokes spectropolarimetric
analysis. The proposed device oers a solid-state spectropolarimetry solution with a small
footprint of 1 ⇥ 0.6 mm2 and low power consumption of 360 mW. Full-Stokes spectral detection
across a broad spectral range of 50 nm with a resolution of 1 nm is demonstrated in characterizing
a material possessing structural chirality. The proposed device may enable a broader application
of spectropolarimetry in the fields ranging from biomedical diagnostics and chemical analysis to
observational astronomy
Chip-scale Full-Stokes Spectropolarimeter in Silicon Photonic Circuits
Wavelength-dependent polarization state of light carries crucial information
about light-matter interactions. However, its measurement is limited to bulky,
energy-consuming devices, which prohibits many modern, portable applications.
Here, we propose and demonstrate a chip-scale spectropolarimeter implemented
using a CMOS-compatible silicon photonics technology. Four compact Vernier
microresonator spectrometers are monolithically integrated with a broadband
polarimeter consisting of a 2D nanophotonic antenna and a polarimetric circuit
to achieve full-Stokes spectropolarimetric analysis. The proposed device offers
a solid-state spectropolarimetry solution with a small footprint of 1*0.6 mm2
and low power consumption of 360 mW}. Full-Stokes spectral detection across a
broad spectral range of 50 nm with a resolution of 1~nm is demonstrated in
characterizing a material possessing structural chirality. The proposed device
may enable a broader application of spectropolarimetry in the fields ranging
from biomedical diagnostics and chemical analysis to observational astronomy.Comment: 14 pages, 12 figures, uses jabbrv.st
65 GOPS/neuron Photonic Tensor Core with Thin-film Lithium Niobate Photonics
Photonics offers a transformative approach to artificial intelligence (AI)
and neuromorphic computing by providing low latency, high bandwidth, and
energy-efficient computations. Here, we introduce a photonic tensor core
processor enabled by time-multiplexed inputs and charge-integrated outputs.
This fully integrated processor, comprising only two thin-film lithium niobate
(TFLN) modulators, a III-V laser, and a charge-integration photoreceiver, can
implement an entire layer of a neural network. It can execute 65 billion
operations per second (GOPS) per neuron, including simultaneous weight
updates-a hitherto unachieved speed. Our processor stands out from conventional
photonic processors, which have static weights set during training, as it
supports fast "hardware-in-the-loop" training, and can dynamically adjust the
inputs (fan-in) and outputs (fan-out) within a layer, thereby enhancing its
versatility. Our processor can perform large-scale dot-product operations with
vector dimensions up to 131,072. Furthermore, it successfully classifies
(supervised learning) and clusters (unsupervised learning) 112*112-pixel images
after "hardware-in-the-loop" training. To handle "hardware-in-the-loop"
training for clustering AI tasks, we provide a solution for multiplications
involving two negative numbers based on our processor.Comment: 19 pages, 6 figure
Optical nanoantennas as on-chip spectrometer: Discriminating the wavelength of infrared light
Based on the size-dependent resonant property of optical nanoantennas, we propose and theoretically verify that the optical detector element, which is composed of three different-size dipole nanoantennas (these antennas arrayed in the same plane look like a Yagi-Uda antenna), can discriminate the wavelength of the detected infrared light. As it behaves like a spectrometer that just needs to be laid on a micro-chip, we can refer to it as on-chip spectrometer. Such optical detector element also can be well extended to the visible-light region, and especially it can capture colour information by itself without Bayer filter