160 research outputs found

    Energy-efficient Integrated Sensing and Communication System and DNLFM Waveform

    Full text link
    Integrated sensing and communication (ISAC) is a key enabler of 6G. Unlike communication radio links, the sensing signal requires to experience round trips from many scatters. Therefore, sensing is more power-sensitive and faces a severer multi-target interference. In this paper, the ISAC system employs dedicated sensing signals, which can be reused as the communication reference signal. This paper proposes to add time-frequency matched windows at both the transmitting and receiving sides, which avoids mismatch loss and increases energy efficiency. Discrete non-linear frequency modulation (DNLFM) is further proposed to achieve both time-domain constant modulus and frequency-domain arbitrary windowing weights. DNLFM uses very few Newton iterations and a simple geometrically-equivalent method to generate, which greatly reduces the complex numerical integral in the conventional method. Moreover, the spatial-domain matched window is proposed to achieve low sidelobes. The simulation results show that the proposed methods gain a higher energy efficiency than conventional methods

    An Economic Growth Model with Optimal Growth Rate and Individual Years of Schooling

    Get PDF
    An economic growth model with individual years of schooling is present. It is proved that there exist optimal individual years of schooling for fixed wage growth rate. On the other hand, the economy has balance growth path for given individual years of schooling. Finally, we prove that there exist optimal individual years of schooling and economic growth rate such that the individual lifetime utility reaches maximum and the economy grows on a balance growth path

    Cerebral Arteriovenous Malformations

    Get PDF
    Radiosurgery for cerebral arteriovenous malformations (AVMs) is limited to 2-year latency. There is no early marker to monitor whether the lesion is responsive to radiosurgery. In this study, we examined endothelial gene expression and molecular changes in response to radiosurgery. Gene expression of E-and P-selectin, ICAM-1, PECAM-1, VCAM-1, tissue factor, and vWF in human cerebral microvascular endothelial cells was quantified by RT-qPCR at different radiation doses and time points. Soluble E-and P-selectin, ICAM-1, VCAM-1, and tissue factor in an animal model of AVMs were quantified by ELISA at different time after radiosurgery. We found that gene expression of E-and P-selectin, ICAM-1, PECAM-1, and VCAM-1 was upregulated by radiation in a dose-dependent manner ( < .05). Gene expression of E-and P-selectin and ICAM-1 was more sensitive to irradiation than that of PECAM-1 and VCAM-1. Radiosurgery induced gene expression of P-selectin, ICAM-1, PECAM-1, and VCAM-1 was linearly correlated with time ( < .05). Radiosurgery induced elevation of soluble E-and P-selectin, ICAM-1, VCAM-1, and tissue factor in a rat model of AVMs ( < .05). Thus, a combination of these molecules measured at different time points may serve as an early predictor of responsiveness of AVMs to radiosurgery

    FEM/Wideband FMBEM coupling based on subdivision isogeometry for structural-acoustic design sensitivity analysis

    Get PDF
    A computer simulation approach known as the isogeometric (IGA) method may directly use the surface information of geometric model. In 3D computer graphics, Loop subdivision surfaces are a common method for creating complicated shapes. In this study, we propose a coupling algorithm that utilizes Loop subdivision surfaces and a direct differentiation method for the computation of acoustic-fluid-structure interaction and the performance of structural-acoustic sensitivity analysis. This algorithm combines the finite element method (FEM) and wideband fast multipole boundary element method (FMBEM). Because of that the proposed method is of a great ability of integrating the numerical calculation and computer-aided modeling, the current technique can deliver results quickly and accurately. The numerical prediction of the effects of vibrating structures with arbitrary shape within sound field is made feasible by the FEM/Wideband FMBEM technique. Calculation examples are provided to show the applicability and effectiveness of the suggested method

    Relative Quantification of Protein-Protein Interactions Using a Dual Luciferase Reporter Pull-Down Assay System

    Get PDF
    The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins
    • …
    corecore