4,118 research outputs found
Coupled effects of local movement and global interaction on contagion
By incorporating segregated spatial domain and individual-based linkage into
the SIS (susceptible-infected-susceptible) model, we investigate the coupled
effects of random walk and intragroup interaction on contagion. Compared with
the situation where only local movement or individual-based linkage exists, the
coexistence of them leads to a wider spread of infectious disease. The roles of
narrowing segregated spatial domain and reducing mobility in epidemic control
are checked, these two measures are found to be conducive to curbing the spread
of infectious disease. Considering heterogeneous time scales between local
movement and global interaction, a log-log relation between the change in the
number of infected individuals and the timescale is found. A theoretical
analysis indicates that the evolutionary dynamics in the present model is
related to the encounter probability and the encounter time. A functional
relation between the epidemic threshold and the ratio of shortcuts, and a
functional relation between the encounter time and the timescale are
found
A generalized public goods game with coupling of individual ability and project benefit
Facing a heavy task, any single person can only make a limited contribution
and team cooperation is needed. As one enjoys the benefit of the public goods,
the potential benefits of the project are not always maximized and may be
partly wasted. By incorporating individual ability and project benefit into the
original public goods game, we study the coupling effect of the four
parameters, the upper limit of individual contribution, the upper limit of
individual benefit, the needed project cost and the upper limit of project
benefit on the evolution of cooperation. Coevolving with the individual-level
group size preferences, an increase in the upper limit of individual benefit
promotes cooperation while an increase in the upper limit of individual
contribution inhibits cooperation. The coupling of the upper limit of
individual contribution and the needed project cost determines the critical
point of the upper limit of project benefit, where the equilibrium frequency of
cooperators reaches its highest level. Above the critical point, an increase in
the upper limit of project benefit inhibits cooperation. The evolution of
cooperation is closely related to the preferred group-size distribution. A
functional relation between the frequency of cooperators and the dominant group
size is found
- …