10,145 research outputs found

    Very Old Isolated Compact Objects as Dark Matter Probes

    Full text link
    Very old isolated neutron stars and white dwarfs have been suggested to be probes of dark matter. To play such a role, two requests should be fulfilled, i.e., the annihilation luminosity of the captured dark matter particles is above the thermal emission of the cooling compact objects (request-I) and also dominate over the energy output due to the accretion of normal matter onto the compact objects (request-II). Request-I calls for very dense dark matter medium and the critical density sensitively depends on the residual surface temperature of the very old compact objects. The accretion of interstellar/intracluster medium onto the compact objects is governed by the physical properties of the medium and by the magnetization and rotation of the stars and may outshine the signal of dark matter annihilation. Only in a few specific scenarios both requests are satisfied and the compact objects are dark matter burners. The observational challenges are discussed and a possible way to identify the dark matter burners is outlined.Comment: 9 pages including 1 Figure, to appear in Phys. Rev.

    A possible Macronova in the late afterglow of the `long-short' burst GRB 060614

    Get PDF
    Long-duration (>2>2 s) γ\gamma-ray bursts that are believed to originate from the death of massive stars are expected to be accompanied by supernovae. GRB 060614, that lasted 102 s, lacks a supernova-like emission down to very stringent limits and its physical origin is still debated. Here we report the discovery of near-infrared bump that is significantly above the regular decaying afterglow. This red bump is inconsistent with even the weakest known supernova. However, it can arise from a Li-Paczy\'{n}ski macronova −- the radioactive decay of debris following a compact binary merger. If this interpretation is correct GRB 060614 arose from a compact binary merger rather than from the death of a massive star and it was a site of a significant production of heavy r-process elements. The significant ejected mass favors a black hole-neutron star merger but a double neutron star merger cannot be ruled out.Comment: Minor revision; The version published in Nature Communication
    • …
    corecore