17,010 research outputs found
Dispelling the Anthropic Principle from the Dimensionality Arguments
It is shown that in d=11 supergravity, under a very reasonable ansatz, the
nearly flat spacetime in which we are living must be 4-dimensional without
appealing to the Anthropic Principle. Can we dispel the Anthropic Principle
completely from cosmology?Comment: 7 pages, Essa
Toward Sustainable Construction: Optimizing Carbon Emission Reduction in the Building Supply Chain through Game-Theoretic Strategies, Government Subsidies, and Cost-Sharing Contract
The carbon emission reduction (CER) in the construction industry can aid in achieving the international community's carbon neutrality target. However, the low motivation of construction enterprises to reduce carbon emissions and the unsatisfactory effect of CER are still unresolved issues. This study aims to address these issues by constructing a building supply chain (BSC) consisting of a developer and a contractor using government subsidies and cost-sharing contracts. The optimal government subsidy and feedback equilibrium strategies of the BSC are examined using a combination of differential game theory and numerical simulations. The findings demonstrate that (1) Cost-sharing contracts may enhance developer and contractor profits and building CER, goodwill, and demand without relying on government subsidies. (2) When subsidized by the government, each equilibrium strategy meets or exceeds the performance of the centralized model, with the cost-sharing contract having a negligible effect on the enhancement of each equilibrium strategy. (3) Both the game structure and the positioning of construction enterprises in the BSC are connected to the number of government subsidies. The city of Shenzhen, one of China's first low-carbon pilot cities, provides a realistic environment for the simulation analysis, with the Block K residential building in Nanshan District serving as a case study. Furthermore, this work contributes to the body of knowledge by proposing a novel CER model for the BSC using differential game theory. The research provides new insights into the role of government subsidies in shaping profit distribution, game structure, and enterprise positioning. Findings demonstrate the value of cost-sharing contracts in improving CER, goodwill, demand, and profits when implemented collaboratively. This advances the theoretical understanding of incentives and strategies for promoting CER in construction.
Practical applications:
This research highlights the importance of collaborative efforts between the government and the BSC to promote sustainable construction and CER. The study found that government subsidies can be an effective tool to encourage developers and contractors to adopt CER practices. However, relying solely on subsidies is insufficient - collaboration through mechanisms like cost-sharing contracts can further enhance sustainability outcomes when enterprises work together. To facilitate low-carbon construction, the government could provide subsidies for developers' promotional and marketing activities as well as funding for contractors' research and development of sustainable materials and technologies. Financial incentives like tax breaks and preferential lending for potential homebuyers can also accelerate consumer demand. Ultimately, creating a supportive environment where enterprises proactively pursue CER creates a win-win situation - the BSC becomes more sustainable while firms improve their branding and profitability. The insights from this research highlight the need for a multi-pronged approach. Governments play a key role through policy and financial support. Realizing the full potential of sustainable construction also requires active participation from developers, contractors, and consumers. By outlining optimal strategies and incentives, this study provides valuable guidance to construction industry stakeholders seeking to implement CER collaboratively
In situ imaging of field emission from individual carbon nanotubes and their structural damage
©2002 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/80/856/1DOI:10.1063/1.1446994Field emission of individual carbon nanotubes was observed by in situ
transmission electron microscopy. A fluctuation in emission current was due to a
variation in distance between the nanotube tip and the counter electrode owing
to a "head-shaking" effect of the nanotube during field emission. Strong
field-induced structural damage of a nanotube occurs in two ways: a
piece-by-piece and segment-by-segment pilling process of the graphitic layers,
and a concentrical layer-by-layer stripping process. The former is believed
owing to a strong electrostatic force, and the latter is likely due to heating
produced by emission current that flowed through the most outer graphitic
layers
Nuclear Modification to Parton Distribution Functions and Parton Saturation
We introduce a generalized definition of parton distribution functions (PDFs)
for a more consistent all-order treatment of power corrections. We present a
new set of modified DGLAP evolution equations for nuclear PDFs, and show that
the resummed -type of leading nuclear size enhanced power
corrections significantly slow down the growth of gluon density at small-.
We discuss the relation between the calculated power corrections and the
saturation phenomena.Comment: 4 pages, to appear in the proceedings of QM200
Initial stage of the 2D-3D transition of a strained SiGe layer on a pit-patterned Si(001) template
We investigate the initial stage of the 2D-3D transition of strained Ge
layers deposited on pit-patterned Si(001) templates. Within the pits, which
assume the shape of inverted, truncated pyramids after optimized growth of a Si
buffer layer, the Ge wetting layer develops a complex morphology consisting
exclusively of {105} and (001) facets. These results are attributed to a
strain-driven step-meandering instability on the facetted side-walls of the
pits, and a step-bunching instability at the sharp concave intersections of
these facets. Although both instabilities are strain-driven, their coexistence
becomes mainly possible by the geometrical restrictions in the pits. It is
shown that the morphological transformation of the pit surface into low-energy
facets has strong influence on the preferential nucleation of Ge islands at the
flat bottom of the pits.Comment: 19 pages, 7 figure
Neutrino Masses, Lepton Flavor Mixing and Leptogenesis in the Minimal Seesaw Model
We present a review of neutrino phenomenology in the minimal seesaw model
(MSM), an economical and intriguing extension of the Standard Model with only
two heavy right-handed Majorana neutrinos. Given current neutrino oscillation
data, the MSM can predict the neutrino mass spectrum and constrain the
effective masses of the tritium beta decay and the neutrinoless double-beta
decay. We outline five distinct schemes to parameterize the neutrino
Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis
via leptogenesis are investigated in some detail by taking account of possible
texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on
the CP-violating asymmetry in the decay of the lighter right-handed Majorana
neutrino. The effects of the renormalization-group evolution on the neutrino
mixing parameters are analyzed, and the correlation between the CP-violating
phenomena at low and high energies is highlighted. We show that the observed
matter-antimatter asymmetry of the Universe can naturally be interpreted
through the resonant leptogenesis mechanism at the TeV scale. The
lepton-flavor-violating rare decays, such as , are also
discussed in the supersymmetric extension of the MSM.Comment: 50 pages, 22 EPS figures, macro file ws-ijmpe.cls included, accepted
for publication in Int. J. Mod. Phys.
RA2: predicting simulation execution time for cloud-based design space explorations
Design space exploration refers to the evaluation of implementation alternatives for many engineering and design problems. A popular exploration approach is to run a large number of simulations of the actual system with varying sets of configuration parameters to search for the optimal ones. Due to the potentially huge resource requirements, cloud-based simulation execution strategies should be considered in many cases. In this paper, we look at the issue of running large-scale simulation-based design space exploration problems on commercial Infrastructure-as-a-Service clouds, namely Amazon EC2, Microsoft Azure and Google Compute Engine. To efficiently manage cloud resources used for execution, the key problem would be to accurately predict the running time for each simulation instance in advance. This is not trivial due to the currently wide range of cloud resource types which offer varying levels of performance. In addition, the widespread use of virtualization techniques in most cloud providers often introduces unpredictable performance interference. In this paper, we propose a resource and application-aware (RA2) prediction approach to combat performance variability on clouds. In particular, we employ neural network based techniques coupled with non-intrusive monitoring of resource availability to obtain more accurate predictions. We conducted extensive experiments on commercial cloud platforms using an evacuation planning design problem over a month-long period. The results demonstrate that it is possible to predict simulation execution times in most cases with high accuracy. The experiments also provide some interesting insights on how we should run similar simulation problems on various commercially available clouds
- …