15,987 research outputs found

    Theoretical Overview on the Flavor Issues of Massive Neutrinos

    Full text link
    We present an overview on some basic properties of massive neutrinos and focus on their flavor issues, including the mass spectrum, flavor mixing pattern and CP violation. The lepton flavor structures are explored by taking account of the observed value of the smallest neutrino mixing angle \theta_{13}. The impact of \theta_{13} on the running behaviors of other flavor mixing parameters is discussed in some detail. The seesaw-induced enhancement of the electromagnetic dipole moments for three Majorana neutrinos is also discussed in a TeV seesaw scenario.Comment: References added. arXiv admin note: text overlap with arXiv:1203.1672, arXiv:1201.2543, arXiv:1203.311

    Hamiltonian lattice quantum chromodynamics at finite density with Wilson fermions

    Full text link
    Quantum chromodynamics (QCD) at sufficiently high density is expected to undergo a chiral phase transition. Understanding such a transition is of particular importance for neutron star or quark star physics. In Lagrangian SU(3) lattice gauge theory, the standard approach breaks down at large chemical potential μ\mu, due to the complex action problem. The Hamiltonian formulation of lattice QCD doesn't encounter such a problem. In a previous work, we developed a Hamiltonian approach at finite chemical potential μ\mu and obtained reasonable results in the strong coupling regime. In this paper, we extend the previous work to Wilson fermions. We study the chiral behavior and calculate the vacuum energy, chiral condensate and quark number density, as well as the masses of light hadrons. There is a first order chiral phase transition at zero temperature.Comment: 23 pages. Version accepted for publication in Physical Review

    Topological phase in 1D1D topological Kondo insulator: Z2Z_{2} topological insulator, Haldane-like phase and Kondo breakdown

    Full text link
    We have simulated a half-filled 1D1D pp-wave periodic Anderson model with numerically exact projector quantum Monte Carlo technique, and the system is indeed located in the Haldane-like state as detected in previous works on the pp-wave Kondo lattice model, though the soluble non-interacting limit corresponds to the conventional Z2Z_{2} topological insulator. The site-resolved magnetization in an open boundary system and strange correlator for the periodic boundary have been used to identify the mentioned topological states. Interestingly, the edge magnetization in the Haldane-like state is not saturated to unit magnetic moment due to the intrinsic charge fluctuation in our periodic Anderson-like model, which is beyond the description of the Kondo lattice-like model in existing literature. The finding here underlies the correlation driven topological state in this prototypical interacting topological state of matter and naive use of non-interacting picture should be taken care. Moreover, no trace of the surface Kondo breakdown at zero temperature is observed and it is suspected that frustration-like interaction may be crucial in inducing such radical destruction of Kondo screening. The findings here may be relevant to our understanding of interacting topological materials like topological Kondo insulator candidate SmB6_{6}.Comment: 11 pages, 9 figures, accepted by EPJ

    Hybrid mesons from anisotropic lattice QCD with the clover and improved gauge actions

    Full text link
    We study hybrid mesons from the clover and improved gauge actions at β=2.6\beta=2.6 on the anisotropic 123×3612^3\times36 lattice using our PC cluster. We estimate the mass of 1−+1^{-+} light quark hybrid as well as the mass of the charmonium hybrid. The improvement of both quark and gluonic actions, first applied to the hybrid mesons, is shown to be more efficient in reducing the lattice spacing and finite volume errors.Comment: Lattice2002 (spectrum
    • …
    corecore