47,224 research outputs found
Buffer occupancy of statistical multiplexers with periodic interchangeable traffic in ATM networks
In this paper we analyze the buffer occupancy in a statistical multiplexer in ATM networks for a special type of traffic, namely, periodic interchangeable (PI) traffic. Certain generalized Ballot theorem is applied to analyze the problem. Explicit formulas for the expected buffer occupancy are derived
Etching-dependent reproducible memory switching in vertical SiO2 structures
Vertical structures of SiO sandwiched between a top tungsten electrode
and conducting non-metal substrate were fabricated by dry and wet etching
methods. Both structures exhibit similar voltage-controlled memory behaviors,
in which short voltage pulses (1 s) can switch the devices between high-
and low-impedance states. Through the comparison of current-voltage
characteristics in structures made by different methods, filamentary conduction
at the etched oxide edges is most consistent with the results, providing
insights into similar behaviors in metal/SiO/metal systems. High ON/OFF ratios
of over 10 were demonstrated.Comment: 6 pages, 3 figures + 2 suppl. figure
Biased amino acid composition in warm-blooded animals
Among eubacteria and archeabacteria, amino acid composition is correlated with habitat temperatures. In particular, species living at high temperatures have proteins enriched in the amino acids E-R-K and depleted in D-N-Q-T-S-H-A. Here, we show that this bias is a proteome-wide effect in prokaryotes, and that the same trend is observed in fully sequenced mammals and chicken compared to cold-blooded vertebrates (Reptilia, Amphibia and fish). Thus, warm-blooded vertebrates likely experienced genome-wide weak positive selection on amino acid composition to increase protein thermostability
Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies
We present a general phenomenological model for the metallicity distribution
(MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies
appear to have stopped accreting gas from the intergalactic medium and are
fossilized systems with their stars undergoing slow internal evolution. For a
wide variety of infall histories of unprocessed baryonic matter to feed star
formation, most of the observed MDs can be well described by our model. The key
requirement is that the fraction of the gas mass lost by supernova-driven
outflows is close to unity. This model also predicts a relationship between the
total stellar mass and the mean metallicity for dSphs in accord with properties
of their dark matter halos. The model further predicts as a natural consequence
that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease
for stellar populations at the higher end of the [Fe/H] range in a dSph. We
show that for infall rates far below the net rate of gas loss to star formation
and outflows, the MD in our model is very sharply peaked at one [Fe/H] value,
similar to what is observed in most globular clusters. This suggests that
globular clusters may be end members of the same family as dSphs.Comment: 8 pages, 3 figures, to be published in the Proceedings of the
National Academy of Science
Electronic structure induced reconstruction and magnetic ordering at the LaAlOSrTiO interface
Using local density approximation (LDA) calculations we predict
GdFeO-like rotation of TiO octahedra at the -type interface between
LaAlO and SrTiO. The narrowing of the Ti bandwidth which results
means that for very modest values of , LDA calculations predict charge
and spin ordering at the interface. Recent experimental evidence for magnetic
interface ordering may be understood in terms of the close proximity of an
antiferromagnetic insulating ground state to a ferromagnetic metallic excited
state
The Carriers of the Interstellar Unidentified Infrared Emission Features: Constraints from the Interstellar C-H Stretching Features at 3.2-3.5 Micrometers
The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and
11.3 micrometer, commonly attributed to polycyclic aromatic hydrocarbon (PAH)
molecules, have been recently ascribed to mixed aromatic/aliphatic organic
nanoparticles. More recently, an upper limit of <9% on the aliphatic fraction
(i.e., the fraction of carbon atoms in aliphatic form) of the UIE carriers
based on the observed intensities of the 3.4 and 3.3 micrometer emission
features by attributing them to aliphatic and aromatic C-H stretching modes,
respectively, and assuming A_34./A_3.3~0.68 derived from a small set of
aliphatic and aromatic compounds, where A_3.4 and A_3.3 are respectively the
band strengths of the 3.4 micrometer aliphatic and 3.3 micrometer aromatic C-H
bonds.
To improve the estimate of the aliphatic fraction of the UIE carriers, here
we analyze 35 UIE sources which exhibit both the 3.3 and 3.4 micrometer C-H
features and determine I_3.4/I_3.3, the ratio of the power emitted from the 3.4
micrometer feature to that from the 3.3 micrometer feature. We derive the
median ratio to be ~ 0.12. We employ density functional theory
and second-order perturbation theory to compute A_3.4/A_3.3 for a range of
methyl-substituted PAHs. The resulting A_3.4/A_3.3 ratio well exceeds 1.4, with
an average ratio of ~1.76. By attributing the 3.4 micrometer
feature exclusively to aliphatic C-H stretch (i.e., neglecting anharmonicity
and superhydrogenation), we derive the fraction of C atoms in aliphatic form to
be ~2%. We therefore conclude that the UIE emitters are predominantly aromatic.Comment: 14 pages, 5 figures, 1 table; accepted for publication in The
Astrophysical Journa
Prediction of thickness limits of ideal polar ultrathin films
Competition between electronic and atomic reconstruction is a constantly
recurring theme in transition-metal oxides. We use density functional theory
calculations to study this competition for a model system consisting of a thin
film of the polar, infinite-layer structure ACuO2 (A=Ca, Sr, Ba) grown on a
nonpolar, perovskite SrTiO3 substrate. A transition from the bulk planar
structure to a chain-type thin film accompanied by substantial changes to the
electronic structure is predicted for a SrCuO2 film fewer than five unit cells
thick. An analytical model explains why atomic reconstruction becomes more
favorable than electronic reconstruction as the film becomes thinner, and
suggests that similar considerations should be valid for other polar films
- …