36,181 research outputs found

    Exploration of Resonant Continuum and Giant Resonance in the Relativistic Approach

    Get PDF
    Single-particle resonant-states in the continuum are determined by solving scattering states of the Dirac equation with proper asymptotic conditions in the relativistic mean field theory (RMF). The regular and irregular solutions of the Dirac equation at a large radius where the nuclear potentials vanish are relativistic Coulomb wave functions, which are calculated numerically. Energies, widths and wave functions of single-particle resonance states in the continuum for ^{120}Sn are studied in the RMF with the parameter set of NL3. The isoscalar giant octupole resonance of ^{120}Sn is investigated in a fully consistent relativistic random phase approximation. Comparing the results with including full continuum states and only those single-particle resonances we find that the contributions from those resonant-states dominate in the nuclear giant resonant processes.Comment: 16 pages, 2 figure

    Pure geometric thick f(R)f(R)-branes: stability and localization of gravity

    Get PDF
    We study two exactly solvable five-dimensional thick brane world models in pure metric f(R)f(R) gravity. Working in the Einstein frame, we show that these solutions are stable against small linear perturbations, including the tensor, vector, and scalar modes. For both models, the corresponding gravitational zero mode is localized on the brane, which leads to the four-dimensional Newton's law; while the massive modes are nonlocalized and only contribute a small correction to the Newton's law at a large distance.Comment: 7 pages, 2 figures, improved version, accepted by Eur. Phys. J.

    Buffer occupancy of statistical multiplexers with periodic interchangeable traffic in ATM networks

    Get PDF
    In this paper we analyze the buffer occupancy in a statistical multiplexer in ATM networks for a special type of traffic, namely, periodic interchangeable (PI) traffic. Certain generalized Ballot theorem is applied to analyze the problem. Explicit formulas for the expected buffer occupancy are derived

    KK-field kinks: stability, exact solutions and new features

    Full text link
    We study a class of noncanonical real scalar field models in (1+1)(1+1)-dimensional flat space-time. We first derive the general criterion for the classical linear stability of an arbitrary static soliton solution of these models. Then we construct first-order formalisms for some typical models and derive the corresponding kink solutions. The linear structures of these solutions are also qualitatively analyzed and compared with the canonical kink solutions.Comment: 14 pages, 3 figure
    • …
    corecore