11,988 research outputs found

    Chiral magnetic currents with QGP medium response in heavy ion collisions at RHIC and LHC energies

    Full text link
    We calculate the electromagnetic current with a more realistic approach in the RHIC and LHC energy regions in the article. We take the partons formation time as the initial time of the magnetic field response of QGP medium. The maximum electromagnetic current and the time-integrated current are two important characteristics of the chiral magnetic effect (CME), which can characterize the intensity and duration of fluctuations of CME. We consider the finite frequency response of CME to a time-varying magnetic field, find a significant impact from QGP medium feedback, and estimate the generated electromagnetic current as a function of time, beam energy and impact parameter.Comment: 10 pages, 12 figur

    Topological phase in 1D1D topological Kondo insulator: Z2Z_{2} topological insulator, Haldane-like phase and Kondo breakdown

    Full text link
    We have simulated a half-filled 1D1D pp-wave periodic Anderson model with numerically exact projector quantum Monte Carlo technique, and the system is indeed located in the Haldane-like state as detected in previous works on the pp-wave Kondo lattice model, though the soluble non-interacting limit corresponds to the conventional Z2Z_{2} topological insulator. The site-resolved magnetization in an open boundary system and strange correlator for the periodic boundary have been used to identify the mentioned topological states. Interestingly, the edge magnetization in the Haldane-like state is not saturated to unit magnetic moment due to the intrinsic charge fluctuation in our periodic Anderson-like model, which is beyond the description of the Kondo lattice-like model in existing literature. The finding here underlies the correlation driven topological state in this prototypical interacting topological state of matter and naive use of non-interacting picture should be taken care. Moreover, no trace of the surface Kondo breakdown at zero temperature is observed and it is suspected that frustration-like interaction may be crucial in inducing such radical destruction of Kondo screening. The findings here may be relevant to our understanding of interacting topological materials like topological Kondo insulator candidate SmB6_{6}.Comment: 11 pages, 9 figures, accepted by EPJ
    • …
    corecore