8,168 research outputs found

    Penalized Clustering of Large Scale Functional Data with Multiple Covariates

    Full text link
    In this article, we propose a penalized clustering method for large scale data with multiple covariates through a functional data approach. In the proposed method, responses and covariates are linked together through nonparametric multivariate functions (fixed effects), which have great flexibility in modeling a variety of function features, such as jump points, branching, and periodicity. Functional ANOVA is employed to further decompose multivariate functions in a reproducing kernel Hilbert space and provide associated notions of main effect and interaction. Parsimonious random effects are used to capture various correlation structures. The mixed-effect models are nested under a general mixture model, in which the heterogeneity of functional data is characterized. We propose a penalized Henderson's likelihood approach for model-fitting and design a rejection-controlled EM algorithm for the estimation. Our method selects smoothing parameters through generalized cross-validation. Furthermore, the Bayesian confidence intervals are used to measure the clustering uncertainty. Simulation studies and real-data examples are presented to investigate the empirical performance of the proposed method. Open-source code is available in the R package MFDA

    Modelling the number counts of early-type galaxies by pure luminosity evolution

    Get PDF
    In this paper, we explore the plausible luminosity evolution of early-type galaxies in different cosmological models by constructing a set of pure luminosity evolution (PLE) models via the choices of the star formation rate (SFR) parameters and formation redshift zfz_f of galaxies, with the observational constraints derived from the Hubble Space Telescope (HST) morphological number counts for elliptical and S0 galaxies of the Medium Deep Survey (MDS) and the Hubble Deep Field (HDF). We find that the number counts of early-type galaxies can be explained by the pure luminosity evolution models, without invoking exotic scenarios such as merging or introducing an additional population. But the evolution should be nearly passive, with a high zfz_f assumed. The conclusion is valid in all of the three cosmological models we adopted in this paper. We also present the redshift distributions for three bins of observed magnitudes in F814w pass-band, to show at which redshift are the objects that dominate the counts at a given magnitude. The predictions of the redshift distribution of 22.5<bj<24.022.5<b_j<24.0 are also presented for comparison with future data.Comment: Plain tex, 15pages, 9 eps figures, plus an extra figure fig2c.eps, with the tex-macro mn.tex. MNRAS, accepte
    • …
    corecore