354 research outputs found

    Sine-modulated wavelength-independent full-range complex spectral optical coherence tomography with an ultra-broadband light source

    Get PDF
    We present a full-range complex spectral domain optical coherence tomography with an ultra-broadband light source based on sinusoidal modulation. For the sinusoidal modulation strategy, a lead zirconate titanate stack actuator is employed to achieve the sinusoidal vibration of a mirror and therefore to get a series of spectral interferogram with different phase delays. The purpose of this strategy is to get higher performance complex-conjugate artifact elimination. Bessel separation of the signal sequence at each wavelength of the spectrometer was used to reconstruct the real and imaginary components of interference fringes; however, the sinusoidal modulation method is independent of light source wavelength. The experimental results demonstrated that the method had an excellent performance in a complex-conjugate suppression of 50 dB for a full width at half maximum bandwidth of 236 nm, and it has better anti-artifact ability and more flexible range in phase shifting than the conventional wavelength-dependent phase-shifting method on a full-range complex spectral optical coherence tomography system. Furthermore, the effect of the hysteresis error of lead zirconate titanate actuators on the performance of complex-conjugate artifact elimination was investigated and the solution of lead zirconate titanate positioning performance for both conventional phase-shifting and sine-modulation methods was suggested

    Two-dimensional optical coherence tomography for real-time structural dynamical characterization

    Get PDF
    We present a two-dimensional optical coherence vibration tomography (2DOCVT) system with an ultra-precision displacement resolution of ~0.1 nm that is capable of in site real-time absolute displacement measurement of structural line vibrations. Experimental results of sinusoidal, sweep and impulse vibrations were reported. The key figures of merit such as the 2DOCVT system could obtain fast line vibration measurement without scanning and it also could be used to capture structural modal parameters in one single impulse excitation measurement without any vibration excitation input information, making it attractive for the application in low-frequency vibration measurement and response-only modal analysis

    Improvement of adenoviral vector-mediated gene transfer to airway epithelia by folate-modified anionic liposomes

    Get PDF
    Despite remarkable progress in the development of both viral and nonviral gene delivery vectors for airway disease treatment, poor gene transfer efficiency to the airway epithelium is a major obstacle in clinical application. To take advantage of the unique features of viral and nonviral vectors, we have developed complexes of adenovirus vector and anionic liposomes (AL-Ad5) by the calcium-induced phase change method. In the current study, based on the fact that there are overexpressed folate receptors on the surface of airway epithelia, we further modified the AL-Ad5 complexes with folate (F-AL-Ad5) to improve the transduction ability of Ad5 in airway epithelia. The transduction efficiencies of the obtained F-AL-Ad5 and AL-Ad5 complexes were assessed in primary-cultured airway epithelia in vitro. Our results indicated that compared with naked adenovirus vector, both AL-Ad5 and F-AL-Ad5 could significantly enhance the gene transduction efficiency of adenovirus vector in primary-cultured airway epithelial cells. Moreover, the enhancement mediated by F-AL-Ad5 was more dramatic than that by AL-Ad5. These results suggested that F-AL-Ad5 may be a useful strategy to deliver therapeutic genes to the airway epithelia and is promising in clinical application
    • …
    corecore