985 research outputs found
Field-cycle-resolved photoionization in solids
The Keldysh theory of photoionization in a solid dielectric is generalized to
the case of arbitrarily short driving pulses of arbitrary pulse shape. We
derive a closed-form solution for the nonadiabatic ionization rate in a
transparent solid with a periodic dispersion relation, which reveals ultrafast
ionization dynamics within the field cycle and recovers the key results of the
Keldysh theory in the appropriate limiting regimes.Comment: 4 pages, 2 figure
Coupled Magnetic Excitations in Single Crystal PrBa2Cu3O6.2
The dispersion of the low-energy magnetic excitations of the Pr sublattice in
PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a
single crystal. The dispersion, which shows the effect of interactions with the
Cu spin-waves, is well described by a model of the coupled Cu-Pr magnetic
system. This enables values for the principal exchange constants to be
determined, which suggest that both Pr-Pr and Cu-Pr interactions are important
in producing the anomalously high ordering temperature of the Pr sublattice.
Measurements of the Cu optic spin wave mode show that the inter-layer Cu-Cu
exchange is significantly lower than in YBa2Cu3O6.2.Comment: To be published Phys. Rev. Let
Phonon Dispersion Relations in PrBa2Cu3O6+x (x ~ 0.2)
We report measurements of the phonon dispersion relations in
non-superconducting, oxygen-deficient PrBa2Cu3O6+x (x ~ 0.2) by inelastic
neutron scattering. The data are compared with a model of the lattice dynamics
based on a common interaction potential. Good agreement is achieved for all but
two phonon branches, which are significantly softer than predicted. These modes
are found to arise predominantly from motion of the oxygen ions in the CuO2
planes. Analogous modes in YBa2Cu3O6 are well described by the common
interaction potential model.Comment: 4 pages, 3 figures. Minor changes following referees' comment
Amplitude concentration in a phase-modulated spectrum due to femtosecond filamentation
We present a method by which the spectral intensity of an ultrafast laser pulse can be accumulated at selected frequencies by a controllable amount. Using a 4-f pulse shaper we modulate the phase of the frequency components of a femtosecond laser. By inducing femtosecond filamentation with the modulated pulse, we can concentrate the spectral amplitude of the pulse at various frequencies. The phase mask applied by the pulse shaper determines the frequencies for which accumulation occurs, as well as the intensity of the spectral concentration. This technique provides a way to obtain pulses with adjustable amplitude using only phase modulation and the nonlinear response of a medium. This provides a means whereby information which is encoded into spectral phase jumps may be decoded into measurable spectral intensity spikes
Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−
The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
Observation of two new baryon resonances
Two structures are observed close to the kinematic threshold in the mass spectrum in a sample of proton-proton collision data, corresponding
to an integrated luminosity of 3.0 fb recorded by the LHCb experiment.
In the quark model, two baryonic resonances with quark content are
expected in this mass region: the spin-parity and
states, denoted and .
Interpreting the structures as these resonances, we measure the mass
differences and the width of the heavier state to be
MeV,
MeV,
MeV, where the first and second
uncertainties are statistical and systematic, respectively. The width of the
lighter state is consistent with zero, and we place an upper limit of
MeV at 95% confidence level. Relative
production rates of these states are also reported.Comment: 17 pages, 2 figure
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
- …