167 research outputs found

    Joint User Scheduling and Beam Selection Optimization for Beam-Based Massive MIMO Downlinks

    Full text link
    In beam-based massive multiple-input multiple-output systems, signals are processed spatially in the radio-frequency (RF) front-end and thereby the number of RF chains can be reduced to save hardware cost, power consumptions and pilot overhead. Most existing work focuses on how to select, or design analog beams to achieve performance close to full digital systems. However, since beams are strongly correlated (directed) to certain users, the selection of beams and scheduling of users should be jointly considered. In this paper, we formulate the joint user scheduling and beam selection problem based on the Lyapunov-drift optimization framework and obtain the optimal scheduling policy in a closed-form. For reduced overhead and computational cost, the proposed scheduling schemes are based only upon statistical channel state information. Towards this end, asymptotic expressions of the downlink broadcast channel capacity are derived. To address the weighted sum rate maximization problem in the Lyapunov optimization, an algorithm based on block coordinated update is proposed and proved to converge to the optimum of the relaxed problem. To further reduce the complexity, an incremental greedy scheduling algorithm is also proposed, whose performance is proved to be bounded within a constant multiplicative factor. Simulation results based on widely-used spatial channel models are given. It is shown that the proposed schemes are close to optimal, and outperform several state-of-the-art schemes.Comment: Submitted to Trans. Wireless Commu

    Optimal Discrete Spatial Compression for Beamspace Massive MIMO Signals

    Full text link
    Deploying massive number of antennas at the base station side can boost the cellular system performance dramatically. Meanwhile, it however involves significant additional radio-frequency (RF) front-end complexity, hardware cost and power consumption. To address this issue, the beamspace-multiple-input-multiple-output (beamspace-MIMO) based approach is considered as a promising solution. In this paper, we first show that the traditional beamspace-MIMO suffers from spatial power leakage and imperfect channel statistics estimation. A beam combination module is hence proposed, which consists of a small number (compared with the number of antenna elements) of low-resolution (possibly one-bit) digital (discrete) phase shifters after the beamspace transformation to further compress the beamspace signal dimensionality, such that the number of RF chains can be reduced beyond beamspace transformation and beam selection. The optimum discrete beam combination weights for the uplink are obtained based on the branch-and-bound (BB) approach. The key to the BB-based solution is to solve the embodied sub-problem, whose solution is derived in a closed-form. Based on the solution, a sequential greedy beam combination scheme with linear-complexity (w.r.t. the number of beams in the beamspace) is proposed. Link-level simulation results based on realistic channel models and long-term-evolution (LTE) parameters are presented which show that the proposed schemes can reduce the number of RF chains by up to 25%25\% with a one-bit digital phase-shifter-network.Comment: Submitted to IEEE Trans. Signal Proces

    Task Replication for Deadline-Constrained Vehicular Cloud Computing: Optimal Policy, Performance Analysis and Implications on Road Traffic

    Full text link
    In vehicular cloud computing (VCC) systems, the computational resources of moving vehicles are exploited and managed by infrastructures, e.g., roadside units, to provide computational services. The offloading of computational tasks and collection of results rely on successful transmissions between vehicles and infrastructures during encounters. In this paper, we investigate how to provide timely computational services in VCC systems. In particular, we seek to minimize the deadline violation probability given a set of tasks to be executed in vehicular clouds. Due to the uncertainty of vehicle movements, the task replication methodology is leveraged which allows one task to be executed by several vehicles, and thus trading computational resources for delay reduction. The optimal task replication policy is of key interest. We first formulate the problem as a finite-horizon sampled-time Markov decision problem and obtain the optimal policy by value iterations. To conquer the complexity issue, we propose the balanced-task-assignment (BETA) policy which is proved optimal and has a clear structure: it always assigns the task with the minimum number of replicas. Moreover, a tight closed-form performance upper bound for the BETA policy is derived, which indicates that the deadline violation probability follows the Rayleigh distribution approximately. Applying the vehicle speed-density relationship in the traffic flow theory, we find that vehicle mobility benefits VCC systems more compared with road traffic systems, by showing that the optimum vehicle speed to minimize the deadline violation probability is larger than the critical vehicle speed in traffic theory which maximizes traffic flow efficiency.Comment: accepted by Internet of Things Journa

    Can Decentralized Status Update Achieve Universally Near-Optimal Age-of-Information in Wireless Multiaccess Channels?

    Full text link
    In an Internet-of-Things system where status data are collected from sensors and actuators for time-critical applications, the freshness of data is vital and can be quantified by the recently proposed age-of-information (AoI) metric. In this paper, we first consider a general scenario where multiple terminals share a common channel to transmit or receive randomly generated status packets. The optimal scheduling problem to minimize AoI is formulated as a restless multi-armed bandit problem. To solve the problem efficiently, we derive the Whittle's index in closed-form and establish the indexability thereof. Compared with existing work, we extend the index policy for AoI optimization to incorporate stochastic packet arrivals and optimal packet management (buffering the latest packet). Inspired by the index policy which has near-optimal performance but is centralized by nature, a decentralized status update scheme, i.e., the index-prioritized random access policy (IPRA), is further proposed, achieving universally near-optimal AoI performance and outperforming state-of-the-arts in the literature.Comment: Submitted to ITC 30, 201

    Optimal Sleeping Mechanism for Multiple Servers with MMPP-Based Bursty Traffic Arrival

    Full text link
    An important fundamental problem in green communications and networking is the operation of servers (routers or base stations) with sleeping mechanism to optimize energy-delay tradeoffs. This problem is very challenging when considering realistic bursty, non-Poisson traffic. We prove for the first time the optimal structure of such a sleep mechanism for multiple servers when the arrival of jobs is modeled by a bursty Markov-modulated Poisson process (MMPP). It is shown that the optimal operation, which determines the number of active (or sleeping) servers dynamically, is hysteretic and monotone, and hence it is a queue-threshold-based policy. This work settles a conjecture in the literature that the optimal sleeping mechanism for a single server with interrupted Poisson arrival process, which can be treated as a special case of MMPP, is queue-threshold-based. The exact thresholds are given by numerically solving the Markov decision process.Comment: Submitted to IEEE WC

    Exploiting Moving Intelligence: Delay-Optimized Computation Offloading in Vehicular Fog Networks

    Full text link
    Future vehicles will have rich computing resources to support autonomous driving and be connected by wireless technologies. Vehicular fog networks (VeFN) have thus emerged to enable computing resource sharing via computation task offloading, providing wide range of fog applications. However, the high mobility of vehicles makes it hard to guarantee the delay that accounts for both communication and computation throughout the whole task offloading procedure. In this article, we first review the state-of-the-art of task offloading in VeFN, and argue that mobility is not only an obstacle for timely computing in VeFN, but can also benefit the delay performance. We then identify machine learning and coded computing as key enabling technologies to address and exploit mobility in VeFN. Case studies are provided to illustrate how to adapt learning algorithms to fit for the dynamic environment in VeFN, and how to exploit the mobility with opportunistic computation offloading and task replication.Comment: 7 pages, 4 figures, accepted by IEEE Communications Magazin

    How Often Should CSI be Updated for Massive MIMO Systems with Massive Connectivity?

    Full text link
    Massive multiple-input multiple-output (MIMO) systems need to support massive connectivity for the application of the Internet of things (IoT). The overhead of channel state information (CSI) acquisition becomes a bottleneck in the system performance due to the increasing number of users. An intermittent estimation scheme is proposed to ease the burden of channel estimation and maximize the sum capacity. In the scheme, we exploit the temporal correlation of MIMO channels and analyze the influence of the age of CSI on the downlink transmission rate using linear precoders. We show the CSI updating interval should follow a quasi-periodic distribution and reach a trade-off between the accuracy of CSI estimation and the overhead of CSI acquisition by optimizing the CSI updating frequency of each user. Numerical results show that the proposed intermittent scheme provides significant capacity gains over the conventional continuous estimation scheme.Comment: To appear in GLOBECOM 201

    Inferring Remote Channel State Information: Cram\'er-Rao Lower Bound and Deep Learning Implementation

    Full text link
    Channel state information (CSI) is of vital importance in wireless communication systems. Existing CSI acquisition methods usually rely on pilot transmissions, and geographically separated base stations (BSs) with non-correlated CSI need to be assigned with orthogonal pilots which occupy excessive system resources. Our previous work adopts a data-driven deep learning based approach which leverages the CSI at a local BS to infer the CSI remotely, however the relevance of CSI between separated BSs is not specified explicitly. In this paper, we exploit a model-based methodology to derive the Cram\'er-Rao lower bound (CRLB) of remote CSI inference given the local CSI. Although the model is simplified, the derived CRLB explicitly illustrates the relationship between the inference performance and several key system parameters, e.g., terminal distance and antenna array size. In particular, it shows that by leveraging multiple local BSs, the inference error exhibits a larger power-law decay rate (w.r.t. number of antennas), compared with a single local BS; this explains and validates our findings in evaluating the deep-neural-network-based (DNN-based) CSI inference. We further improve on the DNN-based method by employing dropout and deeper networks, and show an inference performance of approximately 90%90\% accuracy in a realistic scenario with CSI generated by a ray-tracing simulator.Comment: To appear at GLOBECOM 201

    Remote Channel Inference for Beamforming in Ultra-Dense Hyper-Cellular Network

    Full text link
    In this paper, we propose a learning-based low-overhead channel estimation method for coordinated beamforming in ultra-dense networks. We first show through simulation that the channel state information (CSI) of geographically separated base stations (BSs) exhibits strong non-linear correlations in terms of mutual information. This finding enables us to adopt a novel learning-based approach to remotely infer the quality of different beamforming patterns at a dense-layer BS based on the CSI of an umbrella control-layer BS. The proposed scheme can reduce channel acquisition overhead by replacing pilot-aided channel estimation with the online inference from an artificial neural network, which is fitted offline. Moreover, we propose to exploit joint learning of multiple CBSs and involve more candidate beam patterns to obtain better performance. Simulation results based on stochastic ray-tracing channel models show that the proposed scheme can reach an accuracy of 99.74% in settings with 20 beamforming patterns.Comment: Submitted to Globecom 201

    Status from a Random Field: How Densely Should One Update?

    Full text link
    In many applications, status information of a general spatial process, in contrast to a point information source, is of interest. In this paper, we consider a system where status information is drawn from a random field and transmitted to a fusion center through a wireless multiaccess channel. The optimal density of spatial sampling points to minimize the remote status estimation error is investigated. Assuming a one-dimensional Gauss Markov random field and an exponential correlation function, closed-form expressions of remote estimation error are obtained for First-Come First-Served (FCFS) and Last-Come First-Served (LCFS) service disciplines. The optimal spatial sampling density for the LCFS case is given explicitly. Simulation results are presented which agree with our analysis
    • …
    corecore