15,303 research outputs found
Characterisation of dynamic behaviour of alumina ceramics: evaluation of stress uniformity
Accurate characterisation of dynamic behaviour of ceramics requires the reliable split-Hopkinson pressure bar (SHPB) technique and the condition of uniaxial homogeneous specimen deformation. In this study, an experimentally validated 3D finite element model of the full scale SHPB experiment was developed to quantitatively evaluate the wave propagation in the bars and the stress distribution/evolution in the alumina specimen. Wave signals in both the SHPB experiments and the finite element model were analysed to characterise the dynamic behaviour of alumina. It was found that the equilibrium of both stresses within the specimen and forces at the specimen ends can be established in the intermediate stage of deformation. The validity of stress uniformity in the alumina specimen supports the assumption of uniaxial homogeneous specimen deformation in the SHPB and validates the characterisation of dynamic behaviour of alumina ceramics
Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina
The mechanisms of fracture in polycrystalline alumina were investigated at the grain level using both the micromechanical tests and finite element (FE) model. First, the bending experiments were performed on the alumina microcantilever beams with a controlled displacement rate of 10 nm s–1 at the free end; it was observed that the intergranular fracture dominates the failure process. The full scale 3D Voronoi cell FE model of the microcantilever bending tests was then developed and experimentally validated to provide the insight into the cracking mechanisms in the intergranular fracture. It was found that the crystalline morphology and orientation of grains have a significant impact on the localised stress in polycrystalline alumina. The interaction of adjacent grains as well as their different orientations determines the localised tensile and shear stress state in grain boundaries. In the intergranular fracture process, the crack formation and propagation are predominantly governed by tensile opening (mode I) and shear sliding (mode II) along grain boundaries. Additionally, the parametric FE predictions reveal that the bulk failure load of the alumina microcantilever increases with the cohesive strength and total fracture energy of grain boundaries
Peculiarities of Spin Polarization Inversion at a Thiophene/Cobalt Interface
We perform ab-initio calculations to investigate the spin polarization at the
interface between a thiophene molecule and cobalt substrate. We find that the
reduced symmetry in the presence of a sulfur atom (in the thiophene molecule)
leads to a strong spatial dependence of the spin polarization of the molecule:
The two carbon atoms far from the sulfur acquire a polarization opposite to
that of the substrate, while the carbon atoms bonded directly to sulfur possess
the same polarization as the substrate. We determine the origin of this
peculiar spin interface property as well as its impact on the spin transport.Comment: Revised version. Accepted for publication in Applied Physics Letter
Optimal control of nonlinear partially-unknown systems with unsymmetrical input constraints and its applications to the optimal UAV circumnavigation problem
Aimed at solving the optimal control problem for nonlinear systems with
unsymmetrical input constraints, we present an online adaptive approach for
partially unknown control systems/dynamics. The designed algorithm converges
online to the optimal control solution without the knowledge of the internal
system dynamics. The optimality of the obtained control policy and the
stability for the closed-loop dynamic optimality are proved theoretically. The
proposed method greatly relaxes the assumption on the form of the internal
dynamics and input constraints in previous works. Besides, the control design
framework proposed in this paper offers a new approach to solve the optimal
circumnavigation problem involving a moving target for a fixed-wing unmanned
aerial vehicle (UAV). The control performance of our method is compared with
that of the existing circumnavigation control law in a numerical simulation and
the simulation results validate the effectiveness of our algorithm
- …
