154 research outputs found

    In-N-Out: Face Video Inversion and Editing with Volumetric Decomposition

    Full text link
    3D-aware GANs offer new capabilities for creative content editing, such as view synthesis, while preserving the editing capability of their 2D counterparts. These methods use GAN inversion to reconstruct images or videos by optimizing a latent code, allowing for semantic editing by manipulating the code. However, a model pre-trained on a face dataset (e.g., FFHQ) often has difficulty handling faces with out-of-distribution (OOD) objects, e.g., heavy make-up or occlusions. We address this issue by explicitly modeling OOD objects in face videos. Our core idea is to represent the face in a video using two neural radiance fields, one for the in-distribution and the other for the out-of-distribution object, and compose them together for reconstruction. Such explicit decomposition alleviates the inherent trade-off between reconstruction fidelity and editability. We evaluate our method's reconstruction accuracy and editability on challenging real videos and showcase favorable results against other baselines.Comment: Project page: https://in-n-out-3d.github.io

    Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction

    Get PDF
    A composite cathode material for lithium ion battery applications, Mo-doped LiFePO4/C, is obtained through a facile and fast microwave-assisted synthesis method. Rietveld analysis of LiFePO4-based structural models using synchrotron X-ray diffraction data shows that Mo-ions substitute onto the Fe sites and displace Fe-ions to the Li sites. Supervalent Mo6+ doping can act to introduce Li ion vacancies due to the charge compensation effect and therefore facilitate lithium ion diffusion during charging/discharging. Transmission electron microscope images demonstrate that the pure and doped LiFePO4 nanoparticles were uniformly covered by an approximately 5 nm thin layer of graphitic carbon. Amorphous carbon on the graphitic carbon-coated pure and doped LiFePO4 particles forms a three-dimensional (3D) conductive carbon network, effectively improving the conductivity of these materials. The combined effects of Mo-doping and the 3D carbon network dramatically enhance the electrochemical performance of these LiFePO4 cathodes. In particular, Mo-doped LiFePO4/C delivers a reversible capacity of 162 mA h g(-1) at a current of 0.5 C and shows enhanced capacity retention compared to that of undoped LiFePO4/C. Moreover, the electrode exhibits excellent rate capability, with an associated high discharge capacity and good electrochemical reversibility

    Preparation and Characterization of Polyurethane/Nanocopper Composites and Their Application in Intrauterine Devices

    Get PDF
    A novel intrauterine devices material, polyurethane/nano-copper (PU/NC) nanocomposite, was prepared. The structure, morphology, copper ion (Cu2+) release rate, and water absorption of PU/NC nanocomposites were investigated. The results indicated that the nanocoppers were uniformly dispersed in the matrix. The release rates of Cu2+ of PU/NC nanocomposites remained stable during the experimentation time. These results indicated that the PU/NC nanocomposites have a great potential to replace current commercial intrauterine devices materials

    Preparation and Characterization of Polyurethane/Nanocopper Composites and Their Application in Intrauterine Devices

    Get PDF
    A novel intrauterine devices material, polyurethane/nano-copper (PU/NC) nanocomposite, was prepared. The structure, morphology, copper ion (Cu 2+ ) release rate, and water absorption of PU/NC nanocomposites were investigated. The results indicated that the nanocoppers were uniformly dispersed in the matrix. The release rates of Cu 2+ of PU/NC nanocomposites remained stable during the experimentation time. These results indicated that the PU/NC nanocomposites have a great potential to replace current commercial intrauterine devices materials

    Antimicrobial Mechanism of Antimicrobial Peptide from Paenibacillus ehimensis against Penicillium expansum Spores

    Get PDF
    Penicillium expansum, a common spoilage organism in postharvest fruits, can cause fruit decay and deterioration and endanger human health. It is of great significance to investigate the antimicrobial mechanism of the antimicrobial peptide from Paenibacillus ehimensis on P. expansum spores. The antimicrobial activity of the antimicrobial peptide against P. expansum spores was determined by using the two-fold dilution method as well as measuring the time-killing curve. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to evaluate the effect of the antimicrobial peptide on the ultrastructure of P. expansum spores. The effects of the antimicrobial peptide on the cell membrane and reactive oxygen species (ROS) accumulation of P. expansum were analyzed by fluorescence probes. The results showed that the minimum inhibitory concentration (MIC) of the antimicrobial peptide against P. expansum spores was 3.5 AU/mL. The spore germination rate was significantly decreased by 28.30%, 84.57% and 100% by the antimicrobial peptide at concentrations of 0.5 MIC, 1 MIC and 2 MIC compared with the blank control (P < 0.05). After treatment with the antimicrobial peptide, the spores appeared seriously sunken, the intracellular contents were leaked out, and the morphology and structure were changed. The antimicrobial peptide damaged the cell wall of P. expansum, resulting in the leakage of alkaline phosphatase. The antimicrobial peptide depolarized the cell membrane potential in a dose-dependent manner, and increased the cell membrane permeability, leading to K+ leakage. The fluidity of the cell membrane was increased, which in turn resulted in a significant decrease in DPH fluorescence intensity (P < 0.05). The integrity of the cell membrane was damaged by the antimicrobial peptide, so the fluorescence intensity of SYTOX-Green and the contamination rate of PI were increased. Moreover, the antimicrobial peptide at 1 MIC and 2 MIC increased the fluorescence intensity of DCFH-DA significantly (P < 0.05) and resulted in ROS accumulation, which affected the physiology and metabolism of P. expansum spores. This study indicated that the target sites of the antimicrobial peptide against P. expansum spores were mainly the cell membrane and ROS metabolism

    Perturbed Lipidomic Profiles in Rats With Chronic Cerebral Ischemia Are Regulated by Xiao-Xu-Ming Decoction

    Get PDF
    Chronic cerebral ischemia (CCI) is a serious human health condition with lacking therapeutic agents. Moreover, its mechanism of action remains elusive, and thus novel treatment options are required. Lipid metabolism disorder are closely related to CCI. In this study, a CCI-rats model was established by the permanent occlusion of rat bilateral common carotid arteries, and then the rats were treated with a Xiao-Xu-Ming decoction (XXMD). Lipidomic profiling was conducted in both plasma and brain o determine the effects of the injury and therapy on lipid metabolism. Sphingolipid (particularly long acyl chain and total ceramides), glyceryl phosphatide, and glyceride profiles significantly changed in the brain after model induction and again after dosing. A total of 35 potential biomarkers were found in the brain and four were found in the plasma, representing both CCI injury and XXMD action. Correlations between endogenous lipids and exogenous XXMD compounds were analyzed using linear regression. Two exogenous compounds (cimifugin and 5-O-methylvisamminol) in the brain and 17 exogenous compounds in the plasma, which may represent the active constituents in XXMD, were significantly associated with lipid metabolism. This study provides a new perspective on the potential mechanism of CCI and its treatment with XXMD, as well as on discovering effective components in traditional Chinese medicines
    corecore