46 research outputs found

    Unabridged phase diagram for single-phased FeSexTe1-x thin films

    Get PDF
    A complete phase diagram and its corresponding physical properties are essential prerequisites to understand the underlying mechanism of iron based superconductivity. For the structurally simplest 11 (FeSeTe) system, earlier attempts using bulk samples have not been able to do so due to the fabrication difficulties. Here, thin FeSexTe1-x films with the Se content covering the full range were fabricated by using pulsed laser deposition method. Crystal structure analysis shows that all films retain the tetragonal structure in room temperature. Significantly, the highest superconducting transition temperature (TC = 20 K) occurs in the newly discovered domain, 0.6 - 0.8. The single-phased superconducting dome for the full Se doping range is the first of its kind in iron chalcogenide superconductors. Our results present a new avenue to explore novel physics as well as to optimize superconductors

    NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization

    Full text link
    Monocular 3D object localization in driving scenes is a crucial task, but challenging due to its ill-posed nature. Estimating 3D coordinates for each pixel on the object surface holds great potential as it provides dense 2D-3D geometric constraints for the underlying PnP problem. However, high-quality ground truth supervision is not available in driving scenes due to sparsity and various artifacts of Lidar data, as well as the practical infeasibility of collecting per-instance CAD models. In this work, we present NeurOCS, a framework that uses instance masks and 3D boxes as input to learn 3D object shapes by means of differentiable rendering, which further serves as supervision for learning dense object coordinates. Our approach rests on insights in learning a category-level shape prior directly from real driving scenes, while properly handling single-view ambiguities. Furthermore, we study and make critical design choices to learn object coordinates more effectively from an object-centric view. Altogether, our framework leads to new state-of-the-art in monocular 3D localization that ranks 1st on the KITTI-Object benchmark among published monocular methods.Comment: Paper was accepted to CVPR 202

    Comparative Analysis of Slenderness Ratio Calculation Methods of Cross Bracings for Towers Between China and EU Overhead Transmission Line Standards

    Get PDF
    [Introduction] This paper aims to effectively avoid the design quality problems caused by the difference between domestic and foreign engineering design specifications. The study makes comparative analysis of slenderness ratio of cross bracings for angle steel members of transmission towers according to the current Chinese standard Technical Code for the Design of Tower and Pole Structures of Overhead Transmission Line (DL/T 5486—2020) and the European standard Overhead Electrical Lines Exceeding AC 1 kV (EN—50341—2012). [Method] An example of the typical arrangement pattern of cross bracings with auxiliary materials in projects was given to calculate the slenderness ratio of the poles according to the two standards. [Result] The results we obtained demonstrate that when calculating for the two cross bracings subject to same compression, the Chinese standard adopts the calculation of length correction factor to correct the influence of the joint action of the two cross bracings on the buckling strength of the compression member. The European standard adopts the checking calculation of the sum of buckling strength of the two poles which shall be greater than or equal to the algebraic sum of the loads on the two poles to ensure the buckling strength of the member meets the structural requirement. [Conclusion] In the arrangement pattern of typical cross bracings with auxiliary materials, the calculated buckling strength obtained according to the Chinese standard is less than that obtained according to the European standard under the following three conditions: two poles subject to same compression and equal pressure, two poles subject to same compression and unequal pressure, and two poles with one pole subject to pulling and the other subject to compression

    TIPE2 Suppresses Malignancy of Pancreatic Cancer Through Inhibiting TGFβ1 Mediated Signaling Pathway

    Get PDF
    Pancreatic cancer is one of the major reasons of cancer-associated deaths due to poor diagnosis, high metastasis and drug resistance. Therefore, it is important to understand the cellular and molecular mechanisms of pancreatic cancer to identify new targets for the treatment. TIPE2 is an essential regulator of tumor apoptosis, inflammation and immune homeostasis. However, the role of TIPE2 is still not fully understood in pancreatic cancer. In this study, we found the expression of TIPE2 was decreased in pancreatic cancer tissues compare to paracancerous tissues, which was negatively correlated with tumor size in patients. Overexpression of TIPE2 significantly decreased cell proliferation, metastasis and increased apoptotic events in pancreatic cancer cell lines. Moreover, the results obtained from real time PCR and western blot revealed that TIPE2 was also involved in inhibiting MMPs and N-Cadherin expression while increasing Bax expression in pancreatic cancer cells. Similarly, TIPE2 could inhibit tumor growth in vivo, decrease the expression of Ki-67 and N-Cadherin, and increase the expression of Bax by IHC analysis in tumor tissues isolated from tumor-bearing mice. Mechanistic studies exhibited that TIPE2 might suppress pancreatic cancer development through inhibiting PI3K/AKT and Raf/MEK/ERK signaling pathways triggered by TGFβ1. Moreover, the tumor-infiltrating lymphocytes from tumor-bearing mice were analyzed by flow cytometry, and showed that TIPE2 could promote T cell activation to exert an anti-tumor effect possibly through activation of DCs in a TGFβ1 dependent manner. In general, we described the multiple regulatory mechanisms of TIPE2 in pancreatic tumorigenesis and tumor microenvironment, which suggested TIPE2 may act as a potential therapeutic target in pancreatic cancer

    Analysis of Height-to-Width Ratio of Commercial Streets with Arcades Based on Sunshine Hours and Street Orientation

    No full text
    By extracting and simplifying the characteristics of commercial streets with arcades (Qilou) in Nanning, the tissue map of Qilou streets which reflects the urban morphology, including the road network form, block scale, building scale and other characteristics in a hot and humid area is obtained. In addition, the sunshine simulation is performed by using sunshine design software in an environment comprising streets with arcades to simulate street sunlight environments under various conditions. The relationship among street height-to-width ratio, sunshine hours, and street orientation angle is achieved by nonlinear fitting analysis. Then, a model is established to adjust the street height-to-width ratio based on sunshine requirement and street orientation. The finding indicated that when the street is north–south, it is suggested that the street height-to-width ratio is 0.95–1.13 to reduce sunshine hours effectively, and when the street is east–west, it is proposed that one side of the street should have a recessed space to improve the thermal conditions. The results of this study can serve as the specific guidelines that can be adopted in the redesign and reformation of commercial streets with arcades to achieve thermal comfort of Qilou streets in hot and humid areas

    Analysis of the Wind Environment to Improve the Thermal Comfort in the Colonnade Space of a Qilou Street Based on the Relative Warmth Index

    No full text
    By analyzing measurements of the thermal environment of a qilou (arcade building) street, this study used the relative warmth index (RWI) to evaluate the thermal comfort in the colonnade space of a qilou. The analysis of the influence of the temperature, humidity, and wind speed on the thermal comfort in the colonnade space of a qilou street was conducted, and it was shown that the ambient wind speed had a strong influence on the RWI, indicating that a proper increase in the wind speed positively affected thermal comfort in this space. Then, this study also analyzed the effects of different forms of qilou streets on the wind environment by employing computational fluid dynamics (CFD) and summarized the architectural design measures that can improve the thermal comfort, including adopting back chamfer, street gaps, and the appropriate sizing of building components. It was concluded that the wind environment of a qilou could be optimized in terms of these measures, and the average RWI value decreased by 0.06, effectively enhancing the thermal comfort in the colonnade space. The research findings are applicable toward designing a thermally comfortable environment in the transitional space

    Circulating HPV cDNA in the blood as a reliable biomarker for cervical cancer: A meta-analysis.

    No full text
    The applications of liquid biopsy have attracted much attention in biomedical research in recent years. Circulating cell-free DNA (cfDNA) in the serum may serve as a unique tumor marker in various types of cancer. Circulating tumor DNA (ctDNA) is a type of serum cfDNA found in patients with cancer and contains abundant information regarding tumor characteristics, highlighting its potential diagnostic value in the clinical setting. However, the diagnostic value of cfDNA as a biomarker, especially circulating HPV DNA (HPV cDNA) in cervical cancer remains unclear. Here, we performed a meta-analysis to evaluate the applications of HPV cDNA as a biomarker in cervical cancer. A systematic literature search was performed using PubMed, Embase, and WANFANG MED ONLINE databases up to March 18, 2019. All literature was analyzed using Meta Disc 1.4 and STATA 14.0 software. Diagnostic measures of accuracy of HPV cDNA in cervical cancer were pooled and investigated. Fifteen studies comprising 684 patients with cervical cancer met our inclusion criteria and were subjected to analysis. The pooled sensitivity and specificity were 0.27 (95% confidence interval [CI], 0.24-0.30) and 0.94(95% CI, 0.92-0.96), respectively. The pooled positive likelihood ratio and negative likelihood ratio were 6.85 (95% CI, 3.09-15.21) and 0.60 (95% CI, 0.46-0.78), respectively. The diagnostic odds ratio was 15.25 (95% CI, 5.42-42.94), and the area under the summary receiver operating characteristic curve was 0.94 (95% CI, 0.89-0.99). There was no significant publication bias observed. In the included studies, HPV cDNA showed clear diagnostic value for diagnosing and monitoring cervical cancer. Our meta-analysis suggested that detection of HPV cDNA in patients with cervical cancer could be used as a noninvasive early dynamic biomarker of tumors, with high specificity and moderate sensitivity. Further large-scale prospective studies are required to validate the factors that may influence the accuracy of cervical cancer diagnosis and monitoring
    corecore