177 research outputs found

    On the irreducible characters of Suzuki p-groups

    Full text link
    In this paper, we completely determine the irreducible characters of the four families of Suzuki pp-groups. This corrects some errors in the paper [8].Comment: 26 pages, 20 table

    Adaptive Laboratory Evolution of Halomonas bluephagenesis Enhances Acetate Tolerance and Utilization to Produce Poly(3-hydroxybutyrate)

    Get PDF
    Acetate is a promising economical and sustainable carbon source for bioproduction, but it is also a known cell-growth inhibitor. In this study, adaptive laboratory evolution (ALE) with acetate as selective pressure was applied to Halomonas bluephagenesis TD1.0, a fast-growing and contamination-resistant halophilic bacterium that naturally accumulates poly(3-hydroxybutyrate) (PHB). After 71 transfers, the evolved strain, B71, was isolated, which not only showed better fitness (in terms of tolerance and utilization rate) to high concentrations of acetate but also produced a higher PHB titer compared with the parental strain TD1.0. Subsequently, overexpression of acetyl-CoA synthetase (ACS) in B71 resulted in a further increase in acetate utilization but a decrease in PHB production. Through whole-genome resequencing, it was speculated that genetic mutations (single-nucleotide variation (SNV) in phaB, mdh, and the upstream of OmpA, and insertion of TolA) in B71 might contribute to its improved acetate adaptability and PHB production. Finally, in a 5 L bioreactor with intermittent feeding of acetic acid, B71 was able to produce 49.79 g/L PHB and 70.01 g/L dry cell mass, which were 147.2% and 82.32% higher than those of TD1.0, respectively. These results highlight that ALE provides a reliable method to harness H. bluephagenesis to metabolize acetate for the production of PHB or other high-value chemicals more efficiently

    Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recalcitrant nature of hemicellulosic materials and the high cost in depolymerization are the primary obstacles preventing the use of xylan as feedstock for fuel and chemical production. Consolidated bioprocessing, incorporating enzyme-generating, biomass-degrading and bioproduct-producing capabilities into a single microorganism, could potentially avoid the cost of the dedicated enzyme generation in the process of xylan utilization. In this study, we engineered <it>Escherichia coli </it>strains capable of exporting three hemicellulases to the broth for the succinate production directly from beechwood xylan.</p> <p>Results</p> <p>Xylanases were extracellular environment-directed by fusing with OsmY. Subsequently, twelve variant OsmY fused endoxylanase-xylosidase combinations were characterized and tested. The combination of XynC-A from <it>Fibrobacter succinogenes </it>S85 and XyloA from <it>Fusarium graminearum </it>which appeared to have optimal enzymatic properties was identified as the best choice for xylan hydrolysis (0.18 ± 0.01 g/l protein in the broth with endoxylanase activity of 12.14 ± 0.34 U/mg protein and xylosidase activity of 92 ± 3 mU/mg protein at 8 h after induction). Further improvements of hemicellulases secretion were investigated by <it>lpp </it>deletion, <it>dsbA </it>overexpression and expression level optimization. With co-expression of α-arabinofuranosidase, the engineered <it>E. coli </it>could hydrolyze beechwood xylan to pentose monosaccharides. The hemicellulolytic capacity was further integrated with a succinate-producing strain to demonstrate the production of succinate directly from xylan without externally supplied hydrolases and any other organic nutrient. The resulting <it>E. coli </it>Z6373 was able to produce 0.37 g/g succinate from xylan anaerobically equivalent to 76% of that from xylan acid hydrolysates.</p> <p>Conclusions</p> <p>This report represents a promising step towards the goal of hemicellulosic chemical production. This engineered <it>E. coli </it>expressing and secreting three hemicellulases demonstrated a considerable succinate production on the released monosaccharides from xylan. The ability to use lower-cost crude feedstock will make biological succinate production more economically attractive.</p

    Equivalence between Time Series Predictability and Bayes Error Rate

    Full text link
    Predictability is an emerging metric that quantifies the highest possible prediction accuracy for a given time series, being widely utilized in assessing known prediction algorithms and characterizing intrinsic regularities in human behaviors. Lately, increasing criticisms aim at the inaccuracy of the estimated predictability, caused by the original entropy-based method. In this brief report, we strictly prove that the time series predictability is equivalent to a seemingly unrelated metric called Bayes error rate that explores the lowest error rate unavoidable in classification. This proof bridges two independently developed fields, and thus each can immediately benefit from the other. For example, based on three theoretical models with known and controllable upper bounds of prediction accuracy, we show that the estimation based on Bayes error rate can largely solve the inaccuracy problem of predictability.Comment: 1 Figure, 1 Table, 5 Page

    Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol

    Get PDF
    Background: 2,3-butanediol is an important platform compound which has a wide range of applications, involving in medicine, chemical industry, food and other fields. Especially the optically pure (2R,3R)-2,3-butanediol can be employed as an antifreeze agent and as the precursor for producing chiral compounds. However, some (2R,3R)-2,3-butanediol overproducing strains are pathogenic such as Enterobacter cloacae and Klebsiella oxytoca. Results: In this study, a (3R)-acetoin overproducing C. glutamicum strain, CGS9, was engineered to produce optically pure (2R,3R)-2,3-butanediol efficiently. Firstly, the gene bdhA from B. subtilis 168 was integrated into strain CGS9 and its expression level was further enhanced by using a strong promoter Psod and ribosome binding site (RBS) with high translation initiation rate, and the (2R,3R)-2,3-butanediol titer of the resulting strain was increased by 33.9%. Then the transhydrogenase gene udhA from E. coli was expressed to provide more NADH for 2,3-butanediol synthesis, which reduced the accumulation of the main byproduct acetoin by 57.2%. Next, a mutant atpG was integrated into strain CGK3, which increased the glucose consumption rate by 10.5% and the 2,3-butanediol productivity by 10.9% in shake-flask fermentation. Through fermentation engineering, the most promising strain CGK4 produced a titer of 144.9\ua0g/L (2R,3R)-2,3-butanediol with a yield of 0.429\ua0g/g glucose and a productivity of 1.10\ua0g/L/h in fed-batch fermentation. The optical purity of the resulting (2R,3R)-2,3-butanediol surpassed 98%. Conclusions: To the best of our knowledge, this is the highest titer of optically pure (2R,3R)-2,3-butanediol achieved by GRAS strains, and the result has demonstrated that C. glutamicum is a competitive candidate for (2R,3R)-2,3-butanediol production

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p
    corecore