230 research outputs found

    A New Two-Dimensional Functional Material with Desirable Bandgap and Ultrahigh Carrier Mobility

    Full text link
    Two-dimensional (2D) semiconductors with direct and modest bandgap and ultrahigh carrier mobility are highly desired functional materials for nanoelectronic applications. Herein, we predict that monolayer CaP3 is a new 2D functional material that possesses not only a direct bandgap of 1.15 eV (based on HSE06 computation), and also a very high electron mobility up to 19930 cm2 V-1 s-1, comparable to that of monolayer phosphorene. More remarkably, contrary to the bilayer phosphorene which possesses dramatically reduced carrier mobility compared to its monolayer counterpart, CaP3 bilayer possesses even higher electron mobility (22380 cm2 V-1 s-1) than its monolayer counterpart. The bandgap of 2D CaP3 can be tuned over a wide range from 1.15 to 0.37 eV (HSE06 values) through controlling the number of stacked CaP3 layers. Besides novel electronic properties, 2D CaP3 also exhibits optical absorption over the entire visible-light range. The combined novel electronic, charge mobility, and optical properties render 2D CaP3 an exciting functional material for future nanoelectronic and optoelectronic applications

    Growth, physicochemical properties, and morphogenesis of Chinese wild-type PRV Fa and its gene-deleted mutant strain PRV SA215

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PRV Fa is common in China and causes most of the pseudorabies in the pig industry. A PRV SA215 strain with deleted gE, gI, and TK genes was constructed to develop a commercial attenuated live vaccine. However, the physicochemical properties, growth pattern, penetration kinetics, and morphogenesis of the PRV SA215 and its parental PRV Fa strain are unclear.</p> <p>Results</p> <p>A series of experiments were conducted to characterize both strains and provide more information. PRV Fa and PRV SA215 were found to have similar penetration patterns, with about 5 min half-time of penetration. The SA215 strain exhibited a slight delay in entry compared with PRV Fa. In the one-step growth test, the titers of the SA215 strain were first detected at 8 h, rapidly increased, and peaked at 12 h. A plateau was formed between 12-36 h of culturing. PRV SA215 showed delayed replication and approximately 10-30-fold lower titers during 0-16 h of culturing compared with the PRV-Fa strain. After 16 h, the PRV Fa titers dramatically decreased, whereas those of PRV SA215 were prolonged to 36 h and reached a titer value equal to that of PRV Fa and then decreased. Both strains were sensitive to both heat and acid-alkali treatments; however, PRV Fa was relatively more stable to heat treatment than PRV SA215. Both strains could propagate in the cultures with pH values from 5.0 to 9.0. Cultures with pH below 3.0 or above 11.0 were fatal to both strains. Both strains had considerable resistance to freeze-thawing treatments. Morphogenetic investigations showed that typical phases in the maturation pathway were observed in the PRV Fa-infected PK15 cells, whereas secondary envelopment was not observed in the PRV SA215 strain. Instead, capsid aggregations with concomitants of electrodense materials were observed.</p> <p>Conclusions</p> <p>These results suggest that PRV SA215 is a promising strain for vaccine development</p

    Ambient air pollution and adverse birth outcomes: a natural experiment study

    Get PDF
    Background Radical regulations to improve air quality, including traffic control, were implemented prior to and during the 2008 Beijing Olympic Games. Consequently, ambient concentrations of nitrogen dioxide (NO 2 ) and particular matter 10 micrometers or less (PM 10 ), were reduced in a distinct and short window of time, which presented a natural experiment for testing the relationships between maternal exposure to PM 10 and NO 2 during pregnancy and adverse birth outcomes. Methods We estimated the effect of PM 10 and NO 2 exposure during each trimester of gestation on the risk of preterm birth among live births and the birth weight among term babies. The data were based on 50,874 live births delivered between January 1, 2006 and December 31, 2010 at the Beijing Haidian Maternal and Child Health Hospital. Air monitoring data for the same period were obtained from the Beijing Municipal Environmental Monitoring Center. Results Among full-term births, maternal exposure to NO 2 in the third trimester predicted birth weight, with each 10-unit increment (per 10 ug/m 3 ) in NO 2 concentration associated with a 13.78 g (95 % confidence interval: −21.12, −6.43; p \u3c 0.0001) reduction in birth weight. This association was maintained after adjusting for other pollutants, including carbon monoxide (CO), sulfur dioxide (SO 2 ), and PM 10 . No relationship was found between the concentration of PM 10 and low birth weight among full-term births. Neither PM 10 nor NO 2 concentrations predicted the risk of premature birth. Conclusions Exposure to ambient air pollution during certain periods of pregnancy may decrease birth weight, but the effect size is small

    Study on stability of underlying room and pillar old goaf in close coal seam and mining of the upper coal seam

    Get PDF
    Possible issues during mining of the upper coal seam in old goaf of nearby coal seams, including step subsidence, gas overflow in goaf, and roadway around rock fragmentation. Using the Hanjiawa Coal Mine’s upper coal seam mining, which takes place 28 m above the working face of the lower coal seam, as the research’s focal point. The paper focuses on the self-stability of the coal pillar in the old goaf, the failure form of the upper coal seam mining floor, the roof caving rule of the old goaf in the lower coal seam mining of the upper coal seam, and the bearing capacity of the interlayer rock strata using the pillar goaf stability evaluation system, field geological borehole electrical logging and borehole peeping, finite element difference numerical calculation, and other methods. The conclusion that the old goaf’s coal pillar can be completely stable and that the interlayer rock strata can bear the stress of upper coal seam mining is reached. The results show that the failure depth of the coal pillar in the lower coal seam old goaf is 1–3 m, the maximum failure depth accounting for 15% of the width of the coal pillar, and the failure depth of the roof in the old goaf is 0–3 m; After the mining of the upper coal seam, the floor above the coal pillar of the lower coal seam is plastic failure, and the failure depth is 1–10 m, and the failure depth of the roof of the old goaf of the lower coal seam is 3–15 m, which is 4 times greater than that before the mining. The maximum failure depth of the interlayer rock strata is 22 m, accounting for 78.6% of the rock strata spacing. The interlayer rock strata can bear the mining disturbance of the upper coal seam. The plastic zone of the floor of the upper coal seam is not connected with the plastic zone of the roof of the lower coal seam

    Observation of integer and fractional quantum anomalous Hall states in twisted bilayer MoTe2

    Full text link
    The interplay between strong correlations and topology can lead to the emergence of intriguing quantum states of matter. One well-known example is the fractional quantum Hall effect, where exotic electron fluids with fractionally charged excitations form in partially filled Landau levels. The emergence of topological moir\'e flat bands provides exciting opportunities to realize the lattice analogs of both the integer and fractional quantum Hall states without the need for an external magnetic field. These states are known as the integer and fractional quantum anomalous Hall (IQAH and FQAH) states. Here, we present direct transport evidence of the existence of both IQAH and FQAH states in twisted bilayer MoTe2 (AA stacked). At zero magnetic field, we observe well-quantized Hall resistance of h/e2 around moir\'e filling factor {\nu} = -1 (corresponding to one hole per moir\'e unit cell), and nearly-quantized Hall resistance of 3h/2e2 around {\nu} = -2/3, respectively. Concomitantly, the longitudinal resistance exhibits distinct minima around {\nu} = -1 and -2/3. The application of an electric field induces topological quantum phase transition from the IQAH state to a charge transfer insulator at {\nu} = -1, and from the FQAH state to a generalized Wigner crystal state, further transitioning to a metallic state at {\nu} = -2/3. Our study paves the way for the investigation of fractionally charged excitations and anyonic statistics at zero magnetic field based on semiconductor moir\'e materials

    Photonic crystal Microarray Nanoplatform for High Throughput Detection of Biomolecules

    Get PDF
    ABSTRACT We present preliminary designs and experimental results for creating a microarray nanoplatform based on twodimensional photonic crystal devices in silicon. Multiple photonic crystal microcavities are coupled along the length of a single photonic crystal waveguide that undergo resonance wavelength shifts when an antibody-antibody binding event occurs in the immediate vicinity of the corresponding photonic crystal microcavity. The microarray nanoplatform enables high throughput measurements of multiple antibody-antibody interactions via a single optical waveguide transmission measurement

    Superconductivity above 30 K achieved in dense scandium

    Full text link
    Superconductivity is one of most intriguing quantum phenomena, and the quest for elemental superconductors with high critical temperature (Tc) is of great scientific significance due to their relatively simple material composition and the underlying mechanism. Here we report the experimental discovery of densely compressed scandium (Sc) becoming the first elemental superconductor with Tc breaking into 30 K range, which is comparable to the Tc values of the classic La-Ba-Cu-O or LaFeAsO superconductors. Our results show that Tconset of Sc increases from ~3 K at around 43 GPa to ~32 K at about 283 GPa (Tczero ~ 31 K), which is well above liquid neon temperature. Interestingly measured Tc shows no sign of saturation up to the maximum pressure achieved in our experiments, indicating that Tc might be even higher upon further compression.Comment: 22 pages, 16 figure
    corecore