537 research outputs found

    VLT near- to mid-IR imaging and spectroscopy of the M17 UC1-IRS5 region

    Full text link
    We investigate the surroundings of the hypercompact HII region M17 UC1 to probe the physical properties of the associated young stellar objects and the environment of massive star formation. Five of the seven point sources in this region show LL-band excess emission. Geometric match is found between the H_2 emission and near-IR polarized light in the vicinity of IRS5A, and between the diffuse mid-IR emission and near-IR polarization north of UC1. The H_2 emission is typical for dense PDRs, which are FUV pumped initially and repopulated by collisional de-excitation. The spectral types of IRS5A and B273A are B3-B7 V/III and G4-G5 III, respectively. The observed infrared luminosity L_IR in the range 1-20 micron is derived for three objects; we obtain 2.0x10^3 L_\sun for IRS5A, 13 L_\sun for IRS5C, and 10 L_\sun for B273A. IRS5 might be a young quadruple system. Its primary star IRS5A is confirmed to be a high-mass protostellar object (~ 9 M_\sun, ~1x10^5 yrs); it might have terminated accretion due to the feedback from the stellar activities (radiation pressure, outflow) and the expanding HII region of M17. UC1 might also have terminated accretion because of the expanding hypercompact HII region ionized by itself. The disk clearing process of the low-mass YSOs in this region might be accelerated by the expanding HII region. The outflows driven by UC1 are running in south-north with its northeastern side suppressed by the expanding ionization front of M17; the blue-shifted outflow lobe of IRS5A is seen in two types of tracers along the same line of sight in the form of H_2 emission filament and mid-emission. The H_2 line ratios probe the properties of M17 SW PDR, which is confirmed to have a clumpy structure with two temperature distributions: warm, dense molecular clumps with n_H>10^5 cm^-3 and T~575 K and cooler atomic gas with n_H~3.7x10^3-1.5x10^4 cm-3 and T~50-200 K.Comment: accepted for publication in A&A, 19 pages, 15 figures, 5 table

    CEN34 -- High-Mass YSO in M17 or Background Post-AGB Star?

    Full text link
    We investigate the proposed high-mass young stellar object (YSO) candidate CEN34, thought to be associated with the star forming region M17. Its optical to near-infrared (550-2500 nm) spectrum reveals several photospheric absorption features, such as H{\alpha}, Ca triplet and CO bandheads but lacks any emission lines. The spectral features in the range 8375-8770{\AA} are used to constrain an effective temperature of 5250\pm250 (early-/mid-G) and a surface gravity of 2.0\pm0.3 (supergiant). The spectral energy distribution of CEN34 resembles the SED of a high-mass YSO or an evolved star. Moreover, the observed temperature and surface gravity are identical for high-mass YSOs and evolved stars. The radial velocity relative to LSR (V_LSR) of CEN34 as obtained from various photospheric lines is of the order of -60 km/s and thus distinct from the +25 km/s found for several OB stars in the cluster and for the associated molecular cloud. The SED modeling yields ~ 10^{-4} M_sun of circumstellar material which contributes only a tiny fraction to the total visual extinction (11 mag). In the case of a YSO, a dynamical ejection process is proposed to explain the V_LSR difference between CEN34 and M17. Additionally, to match the temperature and luminosity, we speculate that CEN34 had accumulated the bulk of its mass with accretion rate > 4x10^{-3} M_sun/yr in a very short time span (~ 10^3 yrs), and currently undergoes a phase of gravitational contraction without any further mass gain. However, all the aforementioned characteristics of CEN34 are compatible with an evolved star of 5-7 M_sun and an age of 50-100 Myrs, most likely a background post-AGB star with a distance between 2.0 kpc and 4.5 kpc. We consider the latter classification as the more likely interpretation. Further discrimination between the two possible scenarios should come from the more strict confinement of CEN34's distance.Comment: 8 pages, 8 figures, 2 tables; accepted by A&

    Learning Only On Boundaries: a Physics-Informed Neural operator for Solving Parametric Partial Differential Equations in Complex Geometries

    Full text link
    Recently deep learning surrogates and neural operators have shown promise in solving partial differential equations (PDEs). However, they often require a large amount of training data and are limited to bounded domains. In this work, we present a novel physics-informed neural operator method to solve parametrized boundary value problems without labeled data. By reformulating the PDEs into boundary integral equations (BIEs), we can train the operator network solely on the boundary of the domain. This approach reduces the number of required sample points from O(Nd)O(N^d) to O(Nd−1)O(N^{d-1}), where dd is the domain's dimension, leading to a significant acceleration of the training process. Additionally, our method can handle unbounded problems, which are unattainable for existing physics-informed neural networks (PINNs) and neural operators. Our numerical experiments show the effectiveness of parametrized complex geometries and unbounded problems

    Uncertainty Quantification for Maxwell\u27s Equations

    Full text link
    This dissertation study three different approaches for stochastic electromagnetic fields based on the time domain Maxwell\u27s equations and Drude\u27s model: stochastic Galerkin method, stochastic collocation method, and Monte Carlo class methods. For each method, we study its regularity, stability, and convergence rates. Numerical experiments have been presented to verify our theoretical results. For stochastic collocation method, we also simulate the backward wave propagation in metamaterial phenomenon. It turns out that the stochastic Galerkin method admits the best accuracy property but hugest computational workload as the resultant PDEs system is usually coupled. The Monte Carlo class methods are easy to implement and do parallel computing but the accuracy is relatively low. The stochastic collocation method inherits the advantages of both of these two methods

    Fabrication of a microresonator-fiber assembly maintaining a high-quality factor by CO2 laser welding

    Full text link
    We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high Q-factor of 2.12*10^6 in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid.Comment: 7 pages, 5 figure

    On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes

    Full text link
    We demonstrate electro-optic tuning of an on-chip lithium niobate microresonator with integrated in-plane microelectrodes. First two metallic microelectrodes on the substrate were formed via femtosecond laser process. Then a high-Q lithium niobate microresonator located between the microelectrodes was fabricated by femtosecond laser direct writing accompanied by focused ion beam milling. Due to the efficient structure designing, high electro-optical tuning coefficient of 3.41 pm/V was observed.Comment: 6 pages, 3 figure
    • …
    corecore