236 research outputs found

    Microbial diversity and biogenic methane potential of a thermogenic-gas coal mine

    No full text
    The microbial communities and biogenic methane potential of a gas coal mine were investigated by cultivation-independent and cultivation-dependent approaches. Stable carbon isotopic analysis indicated that in situ methane in the coal mine was dominantly of a thermogenic origin. However, a high level of diversity of bacteria and methanogens that were present in the coal mine was revealed by 454 pyrosequencing, and included various fermentative bacteria in the phyla of Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria, and acetotrophic, hydrogenotrophic, and methylotrophic methanogens. Methane was produced in enrichments of mine water samples supplemented with acetate under laboratory conditions. The microbial flora obtained from the enrichments could stimulate methane formation from coal samples. 16S rRNA gene clone library analysis indicated that the microbial community from coal cultivation samples supplemented with the enriched microbial consortium was dominated by the anaerobic fermentative Clostridiales and facultative acetoclastic Methanosarcina. This study suggests that the biogenic methane potential in the thermogenic-gas coal mine could be stimulated by the indigenous microorganisms

    Unsupervised Active Learning: Optimizing Labeling Cost-Effectiveness for Automatic Speech Recognition

    Full text link
    In recent years, speech-based self-supervised learning (SSL) has made significant progress in various tasks, including automatic speech recognition (ASR). An ASR model with decent performance can be realized by fine-tuning an SSL model with a small fraction of labeled data. Reducing the demand for labeled data is always of great practical value. In this paper, we further extend the use of SSL to cut down labeling costs with active learning. Three types of units on different granularities are derived from speech signals in an unsupervised way, and their effects are compared by applying a contrastive data selection method. The experimental results show that our proposed data selection framework can effectively improve the word error rate (WER) by more than 11% with the same amount of labeled data, or halve the labeling cost while maintaining the same WER, compared to random selection.Comment: 5 pages, 3 figures. Accepted to Interspeech 202

    Generalized Parametric Contrastive Learning

    Full text link
    In this paper, we propose the Generalized Parametric Contrastive Learning (GPaCo/PaCo) which works well on both imbalanced and balanced data. Based on theoretical analysis, we observe that supervised contrastive loss tends to bias high-frequency classes and thus increases the difficulty of imbalanced learning. We introduce a set of parametric class-wise learnable centers to rebalance from an optimization perspective. Further, we analyze our GPaCo/PaCo loss under a balanced setting. Our analysis demonstrates that GPaCo/PaCo can adaptively enhance the intensity of pushing samples of the same class close as more samples are pulled together with their corresponding centers and benefit hard example learning. Experiments on long-tailed benchmarks manifest the new state-of-the-art for long-tailed recognition. On full ImageNet, models from CNNs to vision transformers trained with GPaCo loss show better generalization performance and stronger robustness compared with MAE models. Moreover, GPaCo can be applied to the semantic segmentation task and obvious improvements are observed on the 4 most popular benchmarks. Our code is available at https://github.com/dvlab-research/Parametric-Contrastive-Learning.Comment: TPAMI 2023. arXiv admin note: substantial text overlap with arXiv:2107.1202

    OSNet & MNetO: Two Types of General Reconstruction Architectures for Linear Computed Tomography in Multi-Scenarios

    Full text link
    Recently, linear computed tomography (LCT) systems have actively attracted attention. To weaken projection truncation and image the region of interest (ROI) for LCT, the backprojection filtration (BPF) algorithm is an effective solution. However, in BPF for LCT, it is difficult to achieve stable interior reconstruction, and for differentiated backprojection (DBP) images of LCT, multiple rotation-finite inversion of Hilbert transform (Hilbert filtering)-inverse rotation operations will blur the image. To satisfy multiple reconstruction scenarios for LCT, including interior ROI, complete object, and exterior region beyond field-of-view (FOV), and avoid the rotation operations of Hilbert filtering, we propose two types of reconstruction architectures. The first overlays multiple DBP images to obtain a complete DBP image, then uses a network to learn the overlying Hilbert filtering function, referred to as the Overlay-Single Network (OSNet). The second uses multiple networks to train different directional Hilbert filtering models for DBP images of multiple linear scannings, respectively, and then overlays the reconstructed results, i.e., Multiple Networks Overlaying (MNetO). In two architectures, we introduce a Swin Transformer (ST) block to the generator of pix2pixGAN to extract both local and global features from DBP images at the same time. We investigate two architectures from different networks, FOV sizes, pixel sizes, number of projections, geometric magnification, and processing time. Experimental results show that two architectures can both recover images. OSNet outperforms BPF in various scenarios. For the different networks, ST-pix2pixGAN is superior to pix2pixGAN and CycleGAN. MNetO exhibits a few artifacts due to the differences among the multiple models, but any one of its models is suitable for imaging the exterior edge in a certain direction.Comment: 13 pages, 13 figure

    BPF Algorithms for Multiple Source-Translation Computed Tomography Reconstruction

    Full text link
    Micro-computed tomography (micro-CT) is a widely used state-of-the-art instrument employed to study the morphological structures of objects in various fields. Object-rotation is a classical scanning mode in micro-CT allowing data acquisition from different angles; however, its field-of-view (FOV) is primarily constrained by the size of the detector when aiming for high spatial resolution imaging. Recently, we introduced a novel scanning mode called multiple source translation CT (mSTCT), which effectively enlarges the FOV of the micro-CT system. Furthermore, we developed a virtual projection-based filtered backprojection (V-FBP) algorithm to address truncated projection, albeit with a trade-off in acquisition efficiency (high resolution reconstruction typically requires thousands of source samplings). In this paper, we present a new algorithm for mSTCT reconstruction, backprojection-filtration (BPF), which enables reconstructions of high-resolution images with a low source sampling ratio. Additionally, we found that implementing derivatives in BPF along different directions (source and detector) yields two distinct BPF algorithms (S-BPF and D-BPF), each with its own reconstruction performance characteristics. Through simulated and real experiments conducted in this paper, we demonstrate that achieving same high-resolution reconstructions, D-BPF can reduce source sampling by 75% compared with V-FBP. S-BPF shares similar characteristics with V-FBP, where the spatial resolution is primarily influenced by the source sampling.Comment: 22 pages, 12 figure
    • 

    corecore