1,181 research outputs found

    Complex electronic states in double layered ruthenates (Sr1-xCax)3Ru2O7

    Get PDF
    The magnetic ground state of (Sr1x_{1-x}Cax_x)3_3Ru2_2O7_7 (0 x\leq x \leq 1) is complex, ranging from an itinerant metamagnetic state (0 x<\leq x < 0.08), to an unusual heavy-mass, nearly ferromagnetic (FM) state (0.08 <x<< x < 0.4), and finally to an antiferromagnetic (AFM) state (0.4 x\leq x \leq 1). In this report we elucidate the electronic properties for these magnetic states, and show that the electronic and magnetic properties are strongly coupled in this system. The electronic ground state evolves from an AFM quasi-two-dimensional metal for x=x = 1.0, to an Anderson localized state for 0.4x<1.00.4 \leq x < 1.0 (the AFM region). When the magnetic state undergoes a transition from the AFM to the nearly FM state, the electronic ground state switches to a weakly localized state induced by magnetic scattering for 0.25x<0.40.25 \leq x < 0.4, and then to a magnetic metallic state with the in-plane resistivity ρabTα\rho_{ab} \propto T^\alpha (α>\alpha > 2) for 0.08<x<0.250.08 < x < 0.25. The system eventually transforms into a Fermi liquid ground state when the magnetic ground state enters the itinerant metamagnetic state for x<0.08x < 0.08. When xx approaches the critical composition (xx \sim 0.08), the Fermi liquid temperature is suppressed to zero Kelvin, and non-Fermi liquid behavior is observed. These results demonstrate the strong interplay between charge and spin degrees of freedom in the double layered ruthenates.Comment: 10 figures. To be published in Phys. Rev.

    Guanidinium l-glutamate

    Get PDF
    In the title compound, CH6N3 +·C5H8NO4 −, there are two independent cations and two independent anions in the asymmetric unit. In the crystal structure, cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds into a three-dimensional network

    Learning Rich Features for Gait Recognition by Integrating Skeletons and Silhouettes

    Full text link
    Gait recognition captures gait patterns from the walking sequence of an individual for identification. Most existing gait recognition methods learn features from silhouettes or skeletons for the robustness to clothing, carrying, and other exterior factors. The combination of the two data modalities, however, is not fully exploited. Previous multimodal gait recognition methods mainly employ the skeleton to assist the local feature extraction where the intrinsic discrimination of the skeleton data is ignored. This paper proposes a simple yet effective Bimodal Fusion (BiFusion) network which mines discriminative gait patterns in skeletons and integrates with silhouette representations to learn rich features for identification. Particularly, the inherent hierarchical semantics of body joints in a skeleton is leveraged to design a novel Multi-Scale Gait Graph (MSGG) network for the feature extraction of skeletons. Extensive experiments on CASIA-B and OUMVLP demonstrate both the superiority of the proposed MSGG network in modeling skeletons and the effectiveness of the bimodal fusion for gait recognition. Under the most challenging condition of walking in different clothes on CASIA-B, our method achieves the rank-1 accuracy of 92.1%.Comment: The paper is under consideration at Multimedia Tools and Application

    Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control

    Get PDF
    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls
    corecore