238 research outputs found
A dynamical neural network approach for distributionally robust chance constrained Markov decision process
In this paper, we study the distributionally robust joint chance constrained
Markov decision process. {Utilizing the logarithmic transformation technique,}
we derive its deterministic reformulation with bi-convex terms under the
moment-based uncertainty set. To cope with the non-convexity and improve the
robustness of the solution, we propose a dynamical neural network approach to
solve the reformulated optimization problem. Numerical results on a machine
replacement problem demonstrate the efficiency of the proposed dynamical neural
network approach when compared with the sequential convex approximation
approach
Mitochondrial EF4 links respiratory dysfunction and cytoplasmic translation in Caenorhabditis elegans
AbstractHow animals coordinate cellular bioenergetics in response to stress conditions is an essential question related to aging, obesity and cancer. Elongation factor 4 (EF4/LEPA) is a highly conserved protein that promotes protein synthesis under stress conditions, whereas its function in metazoans remains unknown. Here, we show that, in Caenorhabditis elegans, the mitochondria-localized CeEF4 (referred to as mtEF4) affects mitochondrial functions, especially at low temperature (15°C). At worms' optimum growing temperature (20°C), mtef4 deletion leads to self-brood size reduction, growth delay and mitochondrial dysfunction. Transcriptomic analyses show that mtef4 deletion induces retrograde pathways, including mitochondrial biogenesis and cytoplasmic translation reorganization. At low temperature (15°C), mtef4 deletion reduces mitochondrial translation and disrupts the assembly of respiratory chain supercomplexes containing complex IV. These observations are indicative of the important roles of mtEF4 in mitochondrial functions and adaptation to stressful conditions
Research on PDMA system based on complementary sequence and low complexity detection algorithm
With the intensive deployment of mobile networks and the vigorous development of new multimedia services, video has gradually become the mainstream of cultural consumption. The contradiction between the proliferation of video data services and the scarcity of spectrum resources has brought great challenges to the current network resource allocation. Non-orthogonal multiple access (NOMA) can be used to solve this problem by signal superposition and spectrum multiplexing to improve system access capability. As a new type of joint optimization design of transmitter and receiver side, PDMA has high research value. In this paper, a framework of PDMA video transmission system based on H.264 video compression coding (HVC-PDMA) is proposed. Poly complementary sequence (PCS) spread spectrum coding is performed on the transmission codebook in order to improve the transmission accuracy. Meanwhile, a low complexity serial sphere compensated Max-log MPA (SSCM-MPA) algorithm is proposed to reduce the complexity of the multi-user detection algorithm. Simulation results show that the PCS spread spectrum can improve system throughput and peak signal-to-noise ratio (PSNR) while reducing bit error rate (BER). SSCM-MPA algorithm can greatly reduce the complexity and improve the transmission efficiency
Effect of temperature on microstructure and deformation mechanism of Fe-30Mn-3Si-4Al TWIP steel at strain rate of 700 s-1
As twinning-induced plasticity (TWIP) steel is one potential material for shaped charge liner due to the combination of high strength and high plasticity, deformation mechanism at high strain rate and high temperature is required to study. Compression experiments of Fe-30Mn-3Si-4Al TWIP steel were conducted using a Gleeble-1500 thermal simulation machine and a split-Hopkinson pressure bar (SHPB) between 298 and 1073 K at strain rates of 10-3 and 700 s-1, respectively. Microstructures were observed using optical microscopy (OM) and transmission electron microscopy (TEM). Results show that flow stress and densities of deformation twins and dislocations decrease with increasing deformation temperature at strain rates of 10-3 and 700 s-1. The stack fault energy (SFE) values (Γ) of Fe-30Mn-3Si-4Al TWIP steel at different temperatures were calculated using thermodynamic data. Based on corresponding microstructures, it can be inferred that at 700 s-1, twinning is the main deformation mechanism at 298-573 K for 30 mJ/m2≤Γ≤63 mJ/m, while dislocation gliding is the main deformation mechanism above 1073 K for Γ≥ 145 mJ/m2. In addition, with increasing strain rate from 10-3 to 700 s-1, the SFE range of twinning is enlarged and the SEF value of twinning becomes higher
An interference-reducing precoding for SCMA multicast design based on complementary sequences
In a multi-group multicast sparse code multiple access (SCMA) system, one base station multicasts common messages to multiple multicast groups via different code books. To accommodate more user terminals (UTs), traditional multicast systems have multiple transmitters, each of which works in one-to-many mode. In this way, each UT is subject to inter-transmitter interference. Considering the high degrees of freedom for transmitting and receiving, it is difficult to separate the desired signal from interference signals. Therefore, an interference-reducing precoding scheme is required to ensure the reliability of SCMA multicast communication system. For the SCMA multicast system design, we present three necessary conditions that the interference-reducing matrix should satisfy. Then, the precoding matrix satisfying the three necessary conditions simultaneously is designed by utilizing the complementary sequences (CS) and complete complementary sequences (CCS). In this context, we consider two scenarios with different transmission modes (single-cell and multiple-cell) and different precoding schemes (based on CS and CCS). Simulation results show that proposed transmission schemes can significantly reduce the bit error rate of multicast groups while ensuring the communication throughput, and behave a superior performance over other alternatives. Moreover, theoretical and simulation results also prove that the proposed precoding vectors have perfect average power radiation and omnidirectional coverage performance
Dynamic microglial activation is associated with LPS-induced depressive-like behavior in mice: An [18F] DPA-714 PET imaging study
Major depressive disorder (MDD) is a highly pervasive, severe psychological condition for which the precise underlying pathophysiology is incompletely understood, although microglial activation is known to play a role in this context. In this study we analyzed the association between neuroinflammation and depressive-like behaviors in a lipopolysaccharide (LPS)-induced mouse model system using 10-12-week-old male C57BL/6 mice. Microglial activation and associated neuroinflammatory activity were monitored via positron emission tomography (PET) imaging. Animals were assessed at three time points, including 24 h prior to LPS injection, 24 h post-LPS injection, and 72 h post-LPS injection. Analyses of microglial activation and hippocampal neuroinflammation were conducted through [18]F DPA-714 PET imaging and immunohistochemical staining for ionized calcium-binding adapter molecule 1 (Iba-1) and translocator protein (TSPO). Moreover, NOD-like receptor protein 3 (NLRP3) inflammasome activity and interleukin-1β (IL-1β) levels were assessed at 24 h post-LPS injection. We found that LPS treatment was associated with a marked increase in depressive-like behavior at 24 h post-injection time point, and that it was less pronounced at the 72 h post-injection time point. These changes coincided with enhanced [18F] DPA-714 PET uptake in the whole brain, hippocampus, cortex and amygdala together with increased hippocampal microglial activation as evidenced by immunofluorescent staining. By 72 h post-injection, however, these PET and immunofluorescence phenotypes had returned to baseline levels. Furthermore, increased NLRP3 inflammasome activation and IL-1β expression were evident at 24 h post-LPS injection. These data demonstrate that dynamic microglial activation is associated with LPS-induced depressive-like behaviors and hippocampal neuroinflammation in a mouse model system
Transcriptomic and functional analyses reveal the molecular mechanisms underlying Fe-mediated tobacco resistance to potato virus Y infection
Potato virus Y (PVY) mainly infects Solanaceous crops, resulting in considerable losses in the yield and quality. Iron (Fe) is involved in various biological processes in plants, but its roles in resistance to PVY infection has not been reported. In this study, foliar application of Fe could effectively inhibit early infection of PVY, and a full-length transcriptome and Illumina RNA sequencing was performed to investigate its modes of action in PVY-infected Nicotiana tabacum. The results showed that 18,074 alternative splicing variants, 3,654 fusion transcripts, 3,086 long non-coding RNAs and 14,403 differentially expressed genes (DEGs) were identified. Specifically, Fe application down-regulated the expression levels of the DEGs related to phospholipid hydrolysis, phospholipid signal, cell wall biosynthesis, transcription factors (TFs) and photosystem I composition, while those involved with photosynthetic electron transport chain (PETC) were up-regulated at 1 day post inoculation (dpi). At 3 dpi, these DEGs related to photosystem II composition, PETC, molecular chaperones, protein degradation and some TFs were up-regulated, while those associated with light-harvesting, phospholipid hydrolysis, cell wall biosynthesis were down-regulated. At 9 dpi, Fe application had little effects on resistance to PVY infection and transcript profiles. Functional analysis of these potentially critical DEGs was thereafter performed using virus-induced gene silencing approaches and the results showed that NbCat-6A positively regulates PVY infection, while the reduced expressions of NbWRKY26, NbnsLTP, NbFAD3 and NbHSP90 significantly promote PVY infection in N. benthamiana. Our results elucidated the regulatory network of Fe-mediated resistance to PVY infection in plants, and the functional candidate genes also provide important theoretical bases to further improve host resistance against PVY infection
An atlas of DNA methylomes in porcine adipose and muscle tissues
It is evident that epigenetic factors, especially DNA methylation, have essential roles in obesity development. Here, using pig as a model, we investigate the systematic association between DNA methylation and obesity. We sample eight variant adipose and two distinct skeletal muscle tissues from three pig breeds living within comparable environments but displaying distinct fat level. We generate 1,381 Gb of sequence data from 180 methylated DNA immunoprecipitation libraries, and provide a genome-wide DNA methylation map as well as a gene expression map for adipose and muscle studies. The analysis shows global similarity and difference among breeds, sexes and anatomic locations, and identifies the differentially methylated regions. The differentially methylated regions in promoters are highly associated with obesity development via expression repression of both known obesity-related genes and novel genes. This comprehensive map provides a solid basis for exploring epigenetic mechanisms of adipose deposition and muscle growth
- …