224 research outputs found

    Efficient Iris Localization via Optimization Model

    Get PDF
    Iris localization is one of the most important processes in iris recognition. Because of different kinds of noises in iris image, the localization result may be wrong. Besides this, localization process is time-consuming. To solve these problems, this paper develops an efficient iris localization algorithm via optimization model. Firstly, the localization problem is modeled by an optimization model. Then SIFT feature is selected to represent the characteristic information of iris outer boundary and eyelid for localization. And SDM (Supervised Descent Method) algorithm is employed to solve the final points of outer boundary and eyelids. Finally, IRLS (Iterative Reweighted Least-Square) is used to obtain the parameters of outer boundary and upper and lower eyelids. Experimental result indicates that the proposed algorithm is efficient and effective

    Matching-based Hybrid Service Trading for Task Assignment over Dynamic Mobile Crowdsensing Networks

    Full text link
    By opportunistically engaging mobile users (workers), mobile crowdsensing (MCS) networks have emerged as important approach to facilitate sharing of sensed/gathered data of heterogeneous mobile devices. To assign tasks among workers and ensure low overheads, a series of stable matching mechanisms is introduced in this paper, which are integrated into a novel hybrid service trading paradigm consisting of futures trading mode and spot trading mode to ensure seamless MCS service provisioning. In the futures trading mode, we determine a set of long-term workers for each task through an overbooking-enabled in-advance many-to-many matching (OIA3M) mechanism, while characterizing the associated risks under statistical analysis. In the spot trading mode, we investigate the impact of fluctuations in long-term workers' resources on the violation of service quality requirements of tasks, and formalize a spot trading mode for tasks with violated service quality requirements under practical budget constraints, where the task-worker mapping is carried out via onsite many-to-many matching (O3M) and onsite many-to-one matching (OMOM). We theoretically show that our proposed matching mechanisms satisfy stability, individual rationality, fairness and computational efficiency. Comprehensive evaluations also verify the satisfaction of these properties under practical network settings, while revealing commendable performance on running time, participators' interactions, and service quality

    Development of Space-Time-Controlled Multi-Stage Pulsed Magnetic Field Forming and Manufacturing Technology at the WHMFC*

    Get PDF
    In November 2011, the Project of Basic Research of Forming by Space-Time-Controlled Multi-Stage Pulsed Magnetic Field (Stic-Must-PMF) was supported by the National Basic Research Program of China (973 Project, 2011.11-2016.08). It is aimed at achieving breakthroughs in manufacturing technology to solve current problems in forming largescale and complex sheet and tube parts and components, imposed by the limitations of existing equipment and materials forming properties. The objective of our research group focuses on the design principles and structural layout optimization of Stic-Must-PMF facility. And this paper will report the development of Stic-Must-PMF forming and manufacturing technology at the Wuhan National High Magnetic Field Center (WHMFC) including numerical modeling, experimental setup and experimental studies

    Energy transmission processes in the effectuation chain of solar forcing to the terrestrial atmosphereā€”a review

    Get PDF
    The Sun has an obvious quasi-11-year cycle and numerous short-term eruptive activities. There are four processes of energy transmission in the effectuation chain of solar forcing to the climate system: solar energy input into the atmosphere, atmospheric absorption of the input energy, transformation of the absorbed energy into dynamic and thermodynamic responses in the atmosphere, and coupling among all the layers affected by solar forcings. However, the four processes have not been discussed in their entirety. This present paper reviews studies over the last decade on how solar radiation varies during the solar cycle and solar eruptions, and, correspondingly, how the terrestrial atmosphere absorbs the input solar energy

    Surface charge accumulation characteristics on DC GIL three-post insulators considering the influence of temperature gradient

    Get PDF
    Surface charge accumulation is considered to be a critical factor in flashover failure of three-post insulators. However, surface charge accumulation characteristics on three-post insulators with complex structures and uneven electric fields are still unclear. Furthermore, the temperature gradient field makes charge accumulation more complicated. In this presentation, surface charge profiles of DC three-post insulators under electro-thermal coupling stress are studied by establishing a multi-degree-of-freedom movement measurement system. The abdominal area of the three-post insulator accumulaftes charges of identical polarity as the DC voltage, while the leg area accumulates heteropolar charges. Charge density from the bottom of the leg to the center of the abdomen presents a trimodal distribution pattern, including two homopolar charge peaks and one heteropolar charge peak. Asymmetrical surface conductance distribution arising from the temperature gradient leads to a significant increase in amplitude and distribution range of the homopolar charge peak at the legs of insulator. Increase of the temperature gradient will further magnify the homopolar charge peak at the legs. When DC voltage is 100 kV and conductive pole temperature is 70Ā°C, surface charge density of the three-post insulator can reach 100 Ī¼C/m 2 . Therefore, surface conductance regulation of the leg region is the key to charge regulation and insulation optimization design of DC three-post insulators

    Surface flashover induced by metal contaminants adhered to tri-post epoxy insulators under superimposed direct and lightning impulse voltages

    Get PDF
    Metal contaminants can distort the surface electric field of the tri-post epoxy insulator and cause serious surface charge accumulation, significantly reducing the insulation performance of the insulator under the superimposed DC and lightning impulse voltage. In this paper, an experimental platform for charge accumulation and surface flashover of tri-post epoxy insulators under the superimposed DC and lightning impulse voltage was built, by surface point measurement and charge inversion calculation, the surface charge distribution characteristics of tri-post insulators with attached particles was experimentally explored and the influence law of attached metal particles on the charge accumulation was discussed. The results show that metal particles can cause a surge in the surface charge density of the tri-post epoxy insulator, forming bipolar charge spots whose polarity is opposite to that of the adjacent electrodes. The adsorbed metal dust can cause the polarity reversal of adjacent surface charges, forming a large-area unipolar charge spot. Moreover, the flashover voltage of a tri-post insulator under DC superimposed lightning impulse voltage with a clean surface and attached metal particle was measured, and the synergistic induction mechanism of charge spot accumulation and metal particle discharge on the flashover along the face of the tri-post insulator is thereby revealed. Compared with the clean insulators, the surface flashover voltages of tri-post epoxy insulators with metal contaminants adhered decrease under the superimposed voltages of different polarities, but the decline amplitude is greater under the heteropolar composite voltage. When adhered to the middle of the insulator leg, the distribution range of bipolar charge spots is the widest, and the surface flashover voltage decreases sharply, which can drop by 32% compared with the absence of particles. In addition, when the metal dust adsorbed by the tri-post epoxy insulator has a wide distribution range, the impact of metal dust on the flashover voltage is greater than that of the attached metal particles, and its hazard cannot be ignored. The research results can provide a reference for the insulation test method and optimal design of the DC tri-post epoxy insulato

    Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-Ī² induction in human cells

    Get PDF
    Adaptation of PB2 protein is important for the establishment of avian influenza viruses in mammalian hosts. Here, we identify I292V as the prevalent mutation in PB2 of circulating avian H9N2 and pandemic H1N1 viruses. The same dominant PB2 mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses. In human cells, PB2-292V in H9N2 virus has the combined ability of conferring higher viral polymerase activity and stronger attenuation of IFN-Ī² induction than that of its predecessor PB2-292I. IFN-Ī² attenuation is accompanied by higher binding affinity of PB2-292V for host mitochondrial antiviral signalling protein, an important intermediary protein in the induction of IFN-Ī². In the mouse in vivo model, PB2-292V mutation increases H9N2 virus replication with ensuing increase in disease severity. Collectively, PB2-292V is a new mammalian adaptive marker that promotes H9N2 virus replication in mammalian hosts with the potential to improve transmission from birds to humans
    • ā€¦
    corecore