64 research outputs found

    Key Parameters Requirements for Nonā€Fullereneā€Based Organic Solar Cells with Power Conversion Efficiency >20%

    Get PDF
    The reported power conversion efficiencies (PCEs) of nonfullerene acceptor (NFA) based organic photovoltaics (OPVs) now exceed 14% and 17% for singleā€junction and twoā€terminal tandem cells, respectively. However, increasing the PCE further requires an improved understanding of the factors limiting the device efficiency. Here, the efficiency limits of singleā€junction and twoā€terminal tandem NFAā€based OPV cells are examined with the aid of a numerical device simulator that takes into account the optical properties of the active material(s), charge recombination effects, and the hole and electron mobilities in the active layer of the device. The simulations reveal that singleā€junction NFA OPVs can potentially reach PCE values in excess of 18% with mobility values readily achievable in existing material systems. Furthermore, it is found that balanced electron and hole mobilities of >10āˆ’3 cm2 Vāˆ’1 sāˆ’1 in combination with low nongeminate recombination rate constants of 10āˆ’12 cm3 sāˆ’1 could lead to PCE values in excess of 20% and 25% for singleā€junction and twoā€terminal tandem OPV cells, respectively. This analysis provides the first tangible description of the practical performance targets and useful design rules for singleā€junction and tandem OPVs based on NFA materials, emphasizing the need for developing new material systems that combine these desired characteristics

    Comparison Study of Wide Bandgap Polymer (PBDB-T) and Narrow Bandgap Polymer (PBDTTT-EFT) as Donor for Perylene Diimide Based Polymer Solar Cells

    Get PDF
    Perylene diimide (PDI) derivatives as a kind of promising non-fullerene-based acceptor (NFA) have got rapid development. However, most of the relevant developmental work has focused on synthesizing novel PDI-based structures, and few paid attentions to the selection of the polymer donor in PDI-based solar cells. Wide bandgap polymer (PBDB-T) and narrow bandgap polymer (PBDTTT-EFT) are known as the most efficient polymer donors in polymer solar cells (PSCs). While PBDB-T is in favor with non-fullerene acceptors achieving power conversion efficiency (PCE) more than 12%, PBDTTT-EFT is one of the best electron donors with fullerene acceptors with PCE up to 10%. Despite the different absorption profiles, the working principle of these benchmark polymer donors with a same electron acceptor, specially PDI-based acceptors, was rarely compared. To this end, we used PBDB-T and PBDTTT-EFT as the electron donors, and 1,1ā€²-bis(2-methoxyethoxyl)-7,7ā€²-(2,5-thienyl) bis-PDI (Bis-PDI-T-EG) as the electron acceptor to fabricate PSCs, and systematically compared their differences in device performance, carrier mobility, recombination mechanism, and film morphology

    15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive

    Get PDF
    Solution processed organic solar cells (OSCs) composed of all small molecules (ASM) are promising for production on an industrial scale owing to the properties of small molecules, such as well-defined chemical structures, high purity of materials, and outstanding repeatability from batch to batch synthesis. Remarkably, ASM OSCs with power conversion efficiency (PCE) beyond 13% were achieved by structure improvement of the electron donor and choosingY6as the electron acceptor. However, the fill factor (FF) is an obstacle that limits the further improvement of the PCE for these ASM OSCs. Herein, we focus on the FF improvement of recently reported ASM OSCs withBTR-Cl:Y6as the active layer by miscibility-induced active layer morphology optimization. The incorporation of fullerene derivatives, which have good miscibility with bothBTR-ClandY6, results in reduced bimolecular recombination and thus improved FF. In particular, whenca.5 wt% ofPC(71)BMwas added in the active layer, a FF of 77.11% was achieved without sacrificing the open circuit voltage (V-OC) and the short circuit current density (J(SC)), leading to a record PCE of 15.34% (certified at 14.7%) for ASM OSCs. We found that the optimized device showed comparable charge extraction, longer charge carrier lifetime, and slower bimolecular recombination rate compared with those of the control devices (w/o fullerene). Our results demonstrate that the miscibility driven regulation of active layer morphology by incorporation of a fullerene derivative delicately optimizes the active layer microstructures and improves the device performance, which brings vibrancy to OSC research

    Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells

    Get PDF
    Fluorination is one of the effective approaches to alter the organic semiconductor properties that impact the performance of the organic solar cells (OSCs). Positive effects of fluorination are also revealed in the application of fused ring electron acceptors (FREAs). However, in comparison with the efforts allocated to the material designs and power conversion efficiency enhancement, understanding on the excitons and charge carriers' behaviors in high-performing OSCs containing FREAs is limited. Herein, the impact of fluorine substituents on the active layer morphology, and therefore exciton dissociation, charge separation, and charge carriers' recombination processes are examined by fabricating OSCs with PTO2 as the donor and two FREAs, O-IDTT-IC and its fluorinated analogue O-IDTT-4FIC, as the acceptors. With the presence of O-IDTT-4FIC in the devices, it is found that the excitons dissociate more efficiently, and the activation energy required to split the excitons to free charge carriers is much lower; the charge carriers live longer and suffer less extent of trap-assisted recombination; the trap density is 1 order of magnitude lower than that of the nonfluorinated counterpart. Overall, these findings provide information about the complex impacts of FREA fluorination on efficiently performed OSCs

    Self-assembly enables simple structure organic photovoltaics via green-solvent and open-air-printing: Closing the lab-to-fab gap

    Get PDF
    The ultimate goal of organic solar cells (OSCs) is to deliver cheap, stable, efficient, scalable, and eco-friendly solar-to-power products contributing to the global carbon neutral. However, simultaneously balancing these five critical factors of OSCs toward commercialization is extremely challenging. Herein, a green-solvent-processable and open-air-printable self-assembly strategy is demonstrated to synchronously simplify the device architecture, improve the power conversion efficiency (PCE) and enhance the shelf, thermal as well as light illumination stability of OSCs. The cathode interlayer (CIL)-free self-assembled OSCs exhibit the PCE of 15.5%, higher than that of traditional inverted OSCs of 13.0%, which is among the top values for both CIL-free self-assembled OSCs and open-air blade-coated bulk-heterojunction OSCs. The remarkable enhancements are mainly ascribed to the finely selfassembly, subtly controlled donor/acceptor aggregation rate, and delicately manipulated vertical morphology. Besides, this strategy enables 13.2% efficiency on device area of 0.98 cm(2), implying its potential for scalability. These findings demonstrate that this strategy can close the lab-to-fab gap of OSCs toward commercialized cheap, stable, efficient, scalable, and eco-friendly OSCs

    Discrete Boltzmann Modeling of Plasma Shock Wave

    Full text link
    Plasma shock waves widely exist and play an important role in high-energy-density environment, especially in the inertial confinement fusion. Due to the large gradient of macroscopic physical quantities and the coupled thermal, electrical, magnetic and optical phenomena, there exist not only hydrodynamic non-equilibrium (HNE) effects, but also strong thermodynamic non-equilibrium (TNE) effects around the wavefront. In this work, a two-dimensional single-fluid discrete Boltzmann model is proposed to investigate the physical structure of ion shock. The electron is assumed inertialess and always in thermodynamic equilibrium. The Rankine-Hugoniot relations for single fluid theory of plasma shock wave is derived. It is found that the physical structure of shock wave in plasma is significantly different from that in normal fluid and somewhat similar to that of detonation wave from the sense that a peak appears in the front. The non-equilibrium effects around the shock front become stronger with increasing Mach number. The charge of electricity deviates oppositely from neutrality in upstream and downstream of the shock wave. The large inertia of the ions causes them to lag behind, so the wave front charge is negative and the wave rear charge is positive. The variations of HNE and TNE with Mach number are numerically investigated. The characteristics of TNE can be used to distinguish plasma shock wave from detonation wave.Comment: Accepted by Part C: Journal of Mechanical Engineering Scienc

    Doubleā€Dipole Induced by Incorporating Nitrogenā€Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Nonā€Fullerene Organic Solar Cells

    No full text
    Abstract The cathode interlayer plays a vital role in organic solar cells, which can modify the work function of electrodes, lower the electron extraction barriers, smooth the surface of the active layer, and remove solvent residuals. However, the development of organic cathode interlayer lags behind the rapidly improved organic solar cells because their intrinsic high surface tension can lead to poor contact with the active layers. Herein, a doubleā€dipole strategy is proposed to enhance the properties of organic cathode interlayers, which is induced by incorporating nitrogenā€ and bromineā€containing interlayer materials. To verify this approach, the stateā€ofā€theā€art active layer composed of PM6:Y6 and two prototypical cathode interlayer materials, PDIN and PFNā€Br is selected. Using the cathode interlayer PDIN: PFNā€Br (0.9:0.1, in wt.%) in the devices can reduce the electrode work function, suppress the dark current leakage, and improve charge extractions, leading to enhanced short circuit current density and fill factor. The bromine ions tend to break from PFNā€Br and form a new chemical bond with the silver electrode, which can adsorb extra dipoles directed from the interlayer to silver. These findings on the doubleā€dipole strategy provide insights into the hybrid cathode interlayers for efficient nonā€fullerene organic solar cells

    A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node

    No full text
    Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the nodeā€™s specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53ā€‰mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption
    • ā€¦
    corecore