1,501 research outputs found

    Bound and resonant impurity states in a narrow gaped armchair graphene nanoribbon

    Full text link
    An analytical study of discrete and resonant impurity quasi-Coulomb states in a narrow gaped armchair graphene nanoribbon (GNR) is performed. We employ the adiabatic approximation assuming that the motions parallel ("slow") and perpendicular ("fast") to the boundaries of the ribbon are separated adiabatically. The energy spectrum comprises a sequence of series of quasi-Rydberg levels relevant to the "slow" motion adjacent from the low energies to the size-quantized levels associated with the "fast" motion. Only the series attributed to the ground size-quantized sub-band is really discrete, while others corresponding to the excited sub-bands consist of quasi-discrete (Fano resonant) levels of non-zero energetic widths, caused by the coupling with the states of the continuous spectrum branching from the low lying sub-bands. In the two- and three-subband approximation the spectrum of the complex energies of the impurity electron is derived in an explicit form. Narrowing the GNR leads to an increase of the binding energy and the resonant width both induced by the finite width of the ribbon. Displacing the impurity centre from the mid-point of the GNR causes the binding energy to decrease while the resonant width of the first excited Rydberg series increases. As for the second excited series their widths become narrower with the shift of the impurity. A successful comparison of our analytical results with those obtained by other theoretical and experimental methods is presented. Estimates of the binding energies and the resonant widths taken for the parameters of typical GNRs show that not only the strictly discrete but also the some resonant states are quite stable and could be studied experimentally in doped GNRs

    Measurement of J/ψγηcJ/\psi\to\gamma\eta_{\rm c} decay rate and ηc\eta_{\rm c} parameters at KEDR

    Full text link
    Using the inclusive photon spectrum based on a data sample collected at the J/ψJ/\psi peak with the KEDR detector at the VEPP-4M e+ee^+e^- collider, we measured the rate of the radiative decay J/ψγηcJ/\psi\to\gamma\eta_{\rm c} as well as ηc\eta_{\rm c} mass and width. Taking into account an asymmetric photon lineshape we obtained Γγηc0=2.98±0.180.33+0.15\Gamma^0_{\gamma\eta_{\rm c}}=2.98\pm0.18 \phantom{|}^{+0.15}_{-0.33} keV, Mηc=2983.5±1.43.6+1.6M_{\eta_{\rm c}} = 2983.5 \pm 1.4 \phantom{|}^{+1.6}_{-3.6} MeV/c2c^2, Γηc=27.2±3.12.6+5.4\Gamma_{\eta_{\rm c}} = 27.2 \pm 3.1 \phantom{|}^{+5.4}_{-2.6} MeV.Comment: 6 pages, 3 figure

    Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector

    Full text link
    The present work continues a series of the KEDR measurements of the RR value that started in 2010 at the VEPP-4M e+ee^+e^- collider. By combining new data with our previous results in this energy range we measured the values of RudsR_{\text{uds}} and RR at nine center-of-mass energies between 3.08 and 3.72 GeV. The total accuracy is about or better than 2.6%2.6\% at most of energy points with a systematic uncertainty of about 1.9%1.9\%. Together with the previous precise RR measurement at KEDR in the energy range 1.84-3.05 GeV, it constitutes the most detailed high-precision RR measurement near the charmonium production threshold.Comment: arXiv admin note: text overlap with arXiv:1610.02827 and substantial text overlap with arXiv:1510.0266

    Measurement of J/psi to eta_c gamma at KEDR

    Full text link
    We present a study of the inclusive photon spectra from 5.9 million J/psi decays collected with the KEDR detector at the VEPP-4M e+e- collider. We measure the branching fraction of radiative decay J/psi to eta_c gamma, eta_c width and mass. Our preliminary results are: M(eta_c) = 2979.4+-1.5+-1.9 MeV, G(eta_c) = 27.8+-5.1+-3.3 MeV, B(J/psi to eta_c gamma) = (2.34+-0.15+-0.40)%.Comment: To be published in Proceedings of the PhiPsi09, Oct. 13-16, 2009, Beijing, Chin

    Measurement of B(J/psi->eta_c gamma) at KEDR

    Full text link
    We present a study of the inclusive photon spectrum from 6.3 million J/psi decays collected with the KEDR detector at the VEPP-4M e+e- collider. We measure the branching fraction of the radiative decay J/psi -> eta_c gamma, eta_c width and mass. Taking into account an asymmetric photon line shape we obtain: M(eta_c) = (2978.1 +- 1.4 +- 2.0) MeV/c^2, Gamma(eta_c) = (43.5 +- 5.4 +- 15.8) MeV, B(J/psi->eta_c gamma) = (2.59 +- 0.16 +- 0.31)%$.Comment: 6 pages, 1 figure. To be published in the proceedings of the 4th International Workshop on Charm Physics (Charm2010), October 21-24, 2010, IHEP, Beijin

    Quantum saturation and condensation of excitons in Cu2_2O: a theoretical study

    Full text link
    Recent experiments on high density excitons in Cu2_2O provide evidence for degenerate quantum statistics and Bose-Einstein condensation of this nearly ideal gas. We model the time dependence of this bosonic system including exciton decay mechanisms, energy exchange with phonons, and interconversion between ortho (triplet-state) and para (singlet-state) excitons, using parameters for the excitonic decay, the coupling to acoustic and low-lying optical phonons, Auger recombination, and ortho-para interconversion derived from experiment. The single adjustable parameter in our model is the optical-phonon cooling rate for Auger and laser-produced hot excitons. We show that the orthoexcitons move along the phase boundary without crossing it (i.e., exhibit a ``quantum saturation''), as a consequence of the balance of entropy changes due to cooling of excitons by phonons and heating by the non-radiative Auger two-exciton recombination process. The Auger annihilation rate for para-para collisions is much smaller than that for ortho-para and ortho-ortho collisions, explaining why, under the given experimental conditions, the paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex, figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Time-dependent CP Asymmetries in B0KS0ρ0γB^0\to K^0_S\rho^0\gamma Decays

    Full text link
    We report the first measurement of CP-violation parameters in B^0 -> K_S^0\rho^0\gamma decays based on 657 million B\bar B pairs collected with the Belle detector at the KEKB asymmetric-energy collider. We measure the time-dependent CP violating parameter S_{K_S^0\rho^0\gamma}= 0.11 +/- 0.33(stat.)^{+0.05}_{-0.09}(syst.). We also obtain the effective direct CP violating parameter A_eff=0.05 +/- 0.18(stat.) +/- 0.06(syst.) for m_{K_S\pi^+\pi^-}<1.8 GeV/c^2 and 0.6 GeV/c^2<m_{\pi^+\pi^-}<0.9 GeV/c^2.Comment: 6 pages, 3 figures, to be submitted to PR

    Observation of Two Resonant Structures in e+e- to pi+ pi- psi(2S) via Initial State Radiation at Belle

    Full text link
    The cross section for e+e- to pi+ pi- psi(2S) between threshold and \sqrt{s}=5.5 GeV is measured using 673 fb^{-1} of data on and off the \Upsilon(4S) resonance collected with the Belle detector at KEKB. Two resonant structures are observed in the pi+ pi- psi(2S) invariant mass distribution, one at 4361\pm 9\pm 9 MeV/c2 with a width of 74\pm 15\pm 10 MeV/c2, and another at 4664\pm 11\pm 5 MeV/c2 with a width of 48\pm 15\pm 3 MeV/c2, if the mass spectrum is parameterized with the coherent sum of two Breit-Wigner functions. These values do not match those of any of the known charmonium states.Comment: 10 pages, 5 figures, 2 tables, version to appear in Phys. Rev. Let

    Search for Bs0γγB_{s}^{0}\rightarrow\gamma\gamma and a measurement of the branching fraction for Bs0ϕγB_{s}^{0}\rightarrow\phi\gamma

    Full text link
    We search for the decay Bs0γγB_{s}^{0}\rightarrow\gamma\gamma and measure the branching fraction for Bs0ϕγB_{s}^{0}\rightarrow\phi\gamma using 121.4~fb1\textrm{fb}^{-1} of data collected at the Υ(5S)\Upsilon(\mathrm{5}S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider. The Bs0ϕγB_{s}^{0}\rightarrow\phi\gamma branching fraction is measured to be (3.6±0.5(stat.)±0.3(syst.)±0.6(fs))×105(3.6 \pm 0.5 (\mathrm{stat.}) \pm 0.3 (\mathrm{syst.}) \pm 0.6 (f_{s})) \times 10^{-5}, where fsf_{s} is the fraction of Bs()Bˉs()B_{s}^{(*)}\bar{B}_{s}^{(*)} in bbˉb\bar{b} events. Our result is in good agreement with the theoretical predictions as well as with a recent measurement from LHCb. We observe no statistically significant signal for the decay Bs0γγB_{s}^{0}\rightarrow\gamma\gamma and set a 90%90\% confidence-level upper limit on its branching fraction at 3.1×106 3.1 \times 10^{-6}. This constitutes a significant improvement over the previous result.Comment: 6 pages, 3 figure
    corecore