144 research outputs found

    Single Stage Virtual Try-on via Deformable Attention Flows

    Full text link
    Virtual try-on aims to generate a photo-realistic fitting result given an in-shop garment and a reference person image. Existing methods usually build up multi-stage frameworks to deal with clothes warping and body blending respectively, or rely heavily on intermediate parser-based labels which may be noisy or even inaccurate. To solve the above challenges, we propose a single-stage try-on framework by developing a novel Deformable Attention Flow (DAFlow), which applies the deformable attention scheme to multi-flow estimation. With pose keypoints as the guidance only, the self- and cross-deformable attention flows are estimated for the reference person and the garment images, respectively. By sampling multiple flow fields, the feature-level and pixel-level information from different semantic areas are simultaneously extracted and merged through the attention mechanism. It enables clothes warping and body synthesizing at the same time which leads to photo-realistic results in an end-to-end manner. Extensive experiments on two try-on datasets demonstrate that our proposed method achieves state-of-the-art performance both qualitatively and quantitatively. Furthermore, additional experiments on the other two image editing tasks illustrate the versatility of our method for multi-view synthesis and image animation.Comment: ECCV 202

    Fast-HuBERT: An Efficient Training Framework for Self-Supervised Speech Representation Learning

    Full text link
    Recent years have witnessed significant advancements in self-supervised learning (SSL) methods for speech-processing tasks. Various speech-based SSL models have been developed and present promising performance on a range of downstream tasks including speech recognition. However, existing speech-based SSL models face a common dilemma in terms of computational cost, which might hinder their potential application and in-depth academic research. To address this issue, we first analyze the computational cost of different modules during HuBERT pre-training and then introduce a stack of efficiency optimizations, which is named Fast-HuBERT in this paper. The proposed Fast-HuBERT can be trained in 1.1 days with 8 V100 GPUs on the Librispeech 960h benchmark, without performance degradation, resulting in a 5.2x speedup, compared to the original implementation. Moreover, we explore two well-studied techniques in the Fast-HuBERT and demonstrate consistent improvements as reported in previous work

    SAM3D: Zero-Shot 3D Object Detection via Segment Anything Model

    Full text link
    With the development of large language models, many remarkable linguistic systems like ChatGPT have thrived and achieved astonishing success on many tasks, showing the incredible power of foundation models. In the spirit of unleashing the capability of foundation models on vision tasks, the Segment Anything Model (SAM), a vision foundation model for image segmentation, has been proposed recently and presents strong zero-shot ability on many downstream 2D tasks. However, whether SAM can be adapted to 3D vision tasks has yet to be explored, especially 3D object detection. With this inspiration, we explore adapting the zero-shot ability of SAM to 3D object detection in this paper. We propose a SAM-powered BEV processing pipeline to detect objects and get promising results on the large-scale Waymo open dataset. As an early attempt, our method takes a step toward 3D object detection with vision foundation models and presents the opportunity to unleash their power on 3D vision tasks. The code is released at https://github.com/DYZhang09/SAM3D.Comment: Technical Report. The code is released at https://github.com/DYZhang09/SAM3

    Aircraft route recovery based on distributed integer programming method

    Get PDF
    In order to further promote the application and development of unmanned aviation in the manned field, and reduce the difficulty that airlines cannot avoid due to unexpected factors such as bad weather, aircraft failure, and so on, the problem of restoring aircraft routes has been studied. To reduce the economic losses caused by flight interruption, this paper divides the repair problem of aircraft operation plans into two sub problems, namely, the generation of flight routes and the reallocation of aircraft. Firstly, the existing fixed-point iteration method proposed by Dang is used to solve the feasible route generation model based on integer programming. To calculate quickly and efficiently, a segmentation method that divides the solution space into mutually independent segments is proposed as the premise of distributed computing. The feasible route is then allocated to the available aircraft to repair the flight plan. The experimental results of two examples of aircraft fault grounding and airport closure show that the method proposed in this paper is effective for aircraft route restoration

    Effects of zinc oxide and condensed tannins on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment

    Get PDF
    This experiment was conducted to evaluate effects of zine oxide (ZnO) and condensed tannins (CT), independently or in combination, on the growth performance and intestinal health of weaned piglets in enterotoxigenic Escherichia coli (ETEC-K88)-challenged environment. Randomly divided 72 weaned piglets into 4 groups. Dietary treatments included the following: basic diet group (CON), 1,500 mg/kg zinc oxide group (ZnO), 1,000 mg/kg condensed tannins group (CT), and 1,500 mg/kg zinc oxide +1,000 mg/kg condensed tannins group (ZnO + CT). Dietary ZnO supplementation decreased diarrhea rate from 0 to 14 days, 15 to 28 days, and 0 to 28 days (p < 0.05) and no significant on growth performance. The effect of CT on reducing diarrhea rate and diarrhea index was similar to the results of ZnO. Compared with the CON group, ZnO increased the ileum villus height and improved intestinal barrier function by increasing the content of mucin 2 (MUC-2) in jejunum and ileum mucosa and the mRNA expression of zonula occludens-1 (ZO-1) in jejunum (p < 0.05) and the expression of Occludin in duodenum and ileum (p < 0.05). The effects of CT on intestinal barrier function genes were similar to that of ZnO. Moreover, the mRNA expression of cystic fibrosis transmembrane conductance regulator (CFTR) in jejunum and ileum was reduced in ZnO group (p < 0.05). And CT was also capable of alleviating diarrhea by decreasing CFTR expression and promote water reabsorption by increasing AQP3 expression (p < 0.05). In addition, pigs receiving ZnO diet had higher abundance of phylum Bacteroidetes, and genera Prevotella, and lower phylum Firmicutes and genera Lactobacillus in colonic contents. These results indicated that ZnO and CT can alleviate diarrhea and improve intestinal barrier function of weaned pigs in ETEC-challenged environment. In addition, the application of ZnO combined with CT did not show synergistic effects on piglet intestinal health and overall performance. This study provides a theoretical basis for the application of ZnO in weaning piglet production practices, we also explored effects of CT on the growth performance and intestinal health of weaned piglets in ETEC-challenged environment

    Impaired Delta Np63 Expression is Associated with Poor Tumor Development in Transitional Cell Carcinoma of the Bladder

    Get PDF
    The oncogenic isoform of the p63 protein, delta Np63 (ΔNp63), plays an important role in the pathogenesis of many epithelial carcinomas, and emerging evidences suggest that ΔNp63 is a promising drug target. However, the functions of ΔNp63 in transitional cell carcinoma of bladder (TCCB) are poorly defined. In this study, a ΔNp63 shRNA expression vector was transfected into TCCB cell line 5637 and cell cycling, cell proliferation and protein expression were assessed by flow cytometry and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-dimethyl tetrazolium bromide (MTT) assay, and immunohistochemistry, respectively. The ΔNp63 shRNA expression vector was also injected into 5637 cell xenograft tumors in nude mice, and tumor size was measured, tumor tissue morphology was assessed by immunohistopathology and transmission electron microscopy. In the in vitro study, ΔNp63 shRNA transfection caused successful ΔNp63 gene silencing and resulted in significant arrest of cell cycling and cellular proliferation (p<0.05) as well as cyclin D1 expression. In the nude mouse xenograft model, ΔNp63 shRNA greatly inhibited tumor growth, induced tumor cell apoptosis (p<0.05) and resulted in cyclin D1 downregulation. Our data suggest that ΔNp63 may play an oncogenic role in TCCB progression through promoting cell survival and proliferation. Intratumoral administration of ΔNp63-specific shRNA suppressed tumor ΔNp63 expression and cellular proliferation while promoted tumor cellular apoptosis, and therefore inhibited tumor growth and improved survival of xenograft-bearing mice, which was not accompanied by significant signs of systemic toxicity

    Analysis of the Interference Effects in CMOS Image Sensors Caused by Strong Electromagnetic Pulses

    Get PDF
    With the electromagnetic environment becoming increasingly complex, it is crucial to address the risk posed by electromagnetic pulse, which critically impairs the performance and reliability of electronic systems based on complementary metal oxide semiconductor (CMOS) image sensors. In this context, research on the failure types of CMOS image sensors in a high-power electromagnetic environment, caused by strong electromagnetic pulses and the rapid evaluation method of interference immunity, has garnered significant interest. This paper conducts electromagnetic pulse simulation experiments on CMOS image sensors to first study their failure types, such as image abnormalities and functional interruption, and then identify the corresponding failure criteria. Furthermore, this study builds on the small sample test evaluation method to investigate the interference threshold of functional interruptions in CMOS image sensors by calculating the failure probability at different field strengths. The obtained data were combined with the Weibull distribution function for fitting, the results of which found the interference threshold to be at 40.4 kV/m. The findings of this study provide a basis for evaluating the survivability of CMOS image sensors and their associated reinforcement technology in high-power electromagnetic environments
    • …
    corecore