419 research outputs found

    Towards Accelerated Model Training via Bayesian Data Selection

    Full text link
    Mislabeled, duplicated, or biased data in real-world scenarios can lead to prolonged training and even hinder model convergence. Traditional solutions prioritizing easy or hard samples lack the flexibility to handle such a variety simultaneously. Recent work has proposed a more reasonable data selection principle by examining the data's impact on the model's generalization loss. However, its practical adoption relies on less principled approximations and additional clean holdout data. This work solves these problems by leveraging a lightweight Bayesian treatment and incorporating off-the-shelf zero-shot predictors built on large-scale pre-trained models. The resulting algorithm is efficient and easy-to-implement. We perform extensive empirical studies on challenging benchmarks with considerable data noise and imbalance in the online batch selection scenario, and observe superior training efficiency over competitive baselines. Notably, on the challenging WebVision benchmark, our method can achieve similar predictive performance with significantly fewer training iterations than leading data selection methods

    Heat transfer in conduction Report on Heat Sink Design

    Get PDF
    The purpose of the project is to design a heat sink with limited information given and make sure it reaches certain requirements. Design and optimization process will be done in the beginning, 2-D analytical, and 2-D numerical solution will be generated and used to check the result. Also, a fl ow simulation will be made by using SOLIDWORKS. In the end, result will be compared, diff erent between each result will be analyzed

    Unsupervised Discovery of Interpretable Directions in h-space of Pre-trained Diffusion Models

    Full text link
    We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models. Our method is derived from an existing technique that operates on the GAN latent space. Specifically, we employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself, followed by a reconstructor to reproduce both the type and the strength of the manipulation. By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions. To prevent the discovery of meaningless and destructive directions, we employ a discriminator to maintain the fidelity of shifted sample. Due to the iterative generative process of diffusion models, our training requires a substantial amount of GPU VRAM to store numerous intermediate tensors for back-propagating gradient. To address this issue, we propose a general VRAM-efficient training algorithm based on gradient checkpointing technique to back-propagate any gradient through the whole generative process, with acceptable occupancy of VRAM and sacrifice of training efficiency. Compared with existing related works on diffusion models, our method inherently identifies global and scalable directions, without necessitating any other complicated procedures. Extensive experiments on various datasets demonstrate the effectiveness of our method
    • …
    corecore