193 research outputs found

    HAQ: Hardware-Aware Automated Quantization with Mixed Precision

    Full text link
    Model quantization is a widely used technique to compress and accelerate deep neural network (DNN) inference. Emergent DNN hardware accelerators begin to support mixed precision (1-8 bits) to further improve the computation efficiency, which raises a great challenge to find the optimal bitwidth for each layer: it requires domain experts to explore the vast design space trading off among accuracy, latency, energy, and model size, which is both time-consuming and sub-optimal. Conventional quantization algorithm ignores the different hardware architectures and quantizes all the layers in a uniform way. In this paper, we introduce the Hardware-Aware Automated Quantization (HAQ) framework which leverages the reinforcement learning to automatically determine the quantization policy, and we take the hardware accelerator's feedback in the design loop. Rather than relying on proxy signals such as FLOPs and model size, we employ a hardware simulator to generate direct feedback signals (latency and energy) to the RL agent. Compared with conventional methods, our framework is fully automated and can specialize the quantization policy for different neural network architectures and hardware architectures. Our framework effectively reduced the latency by 1.4-1.95x and the energy consumption by 1.9x with negligible loss of accuracy compared with the fixed bitwidth (8 bits) quantization. Our framework reveals that the optimal policies on different hardware architectures (i.e., edge and cloud architectures) under different resource constraints (i.e., latency, energy and model size) are drastically different. We interpreted the implication of different quantization policies, which offer insights for both neural network architecture design and hardware architecture design.Comment: CVPR 2019. The first three authors contributed equally to this work. Project page: https://hanlab.mit.edu/projects/haq

    Event-triggered consensus of multi-agent systems under directed topology based on periodic sampled-data

    Full text link
    The event-triggered consensus problem of first-order multi-agent systems under directed topology is investigated. The event judgements are only implemented at periodic time instants. Under the designed consensus algorithm, the sampling period is permitted to be arbitrarily large. Another advantage of the designed consensus algorithm is that, for systems with time delay, consensus can be achieved for any finite delay only if it is bounded by the sampling period. The case of strongly connected topology is first investigated. Then, the result is extended to the most general topology which only needs to contain a spanning tree. A novel method based on positive series is introduced to analyze the convergence of the closed-loop systems. A numerical example is provided to illustrate the effectiveness of the obtained theoretical results

    Hardware-Centric AutoML for Mixed-Precision Quantization

    Full text link
    Model quantization is a widely used technique to compress and accelerate deep neural network (DNN) inference. Emergent DNN hardware accelerators begin to support mixed precision (1-8 bits) to further improve the computation efficiency, which raises a great challenge to find the optimal bitwidth for each layer: it requires domain experts to explore the vast design space trading off among accuracy, latency, energy, and model size, which is both time-consuming and sub-optimal. Conventional quantization algorithm ignores the different hardware architectures and quantizes all the layers in a uniform way. In this paper, we introduce the Hardware-Aware Automated Quantization (HAQ) framework which leverages the reinforcement learning to automatically determine the quantization policy, and we take the hardware accelerator's feedback in the design loop. Rather than relying on proxy signals such as FLOPs and model size, we employ a hardware simulator to generate direct feedback signals (latency and energy) to the RL agent. Compared with conventional methods, our framework is fully automated and can specialize the quantization policy for different neural network architectures and hardware architectures. Our framework effectively reduced the latency by 1.4-1.95x and the energy consumption by 1.9x with negligible loss of accuracy compared with the fixed bitwidth (8 bits) quantization. Our framework reveals that the optimal policies on different hardware architectures (i.e., edge and cloud architectures) under different resource constraints (i.e., latency, energy, and model size) are drastically different. We interpreted the implication of different quantization policies, which offer insights for both neural network architecture design and hardware architecture design.Comment: Journal preprint of arXiv:1811.08886 (IJCV, 2020). The first three authors contributed equally to this work. Project page: https://hanlab.mit.edu/projects/haq
    • …
    corecore