203 research outputs found

    SeasonDepth: Cross-Season Monocular Depth Prediction Dataset and Benchmark under Multiple Environments

    Full text link
    Different environments pose a great challenge to the outdoor robust visual perception for long-term autonomous driving and the generalization of learning-based algorithms on different environmental effects is still an open problem. Although monocular depth prediction has been well studied recently, there is few work focusing on the robust learning-based depth prediction across different environments, e.g. changing illumination and seasons, owing to the lack of such a multi-environment real-world dataset and benchmark. To this end, the first cross-season monocular depth prediction dataset and benchmark SeasonDepth is built based on CMU Visual Localization dataset. To benchmark the depth estimation performance under different environments, we investigate representative and recent state-of-the-art open-source supervised, self-supervised and domain adaptation depth prediction methods from KITTI benchmark using several newly-formulated metrics. Through extensive experimental evaluation on the proposed dataset, the influence of multiple environments on performance and robustness is analyzed qualitatively and quantitatively, showing that the long-term monocular depth prediction is still challenging even with fine-tuning. We further give promising avenues that self-supervised training and stereo geometry constraint help to enhance the robustness to changing environments. The dataset is available on https://seasondepth.github.io, and benchmark toolkit is available on https://github.com/SeasonDepth/SeasonDepth.Comment: 19 pages, 13 figure

    CUSIDE: Chunking, Simulating Future Context and Decoding for Streaming ASR

    Full text link
    History and future contextual information are known to be important for accurate acoustic modeling. However, acquiring future context brings latency for streaming ASR. In this paper, we propose a new framework - Chunking, Simulating Future Context and Decoding (CUSIDE) for streaming speech recognition. A new simulation module is introduced to recursively simulate the future contextual frames, without waiting for future context. The simulation module is jointly trained with the ASR model using a self-supervised loss; the ASR model is optimized with the usual ASR loss, e.g., CTC-CRF as used in our experiments. Experiments show that, compared to using real future frames as right context, using simulated future context can drastically reduce latency while maintaining recognition accuracy. With CUSIDE, we obtain new state-of-the-art streaming ASR results on the AISHELL-1 dataset.Comment: submitted to INTERSPEECH 202

    Novel Quasi‐Liquid K‐Na Alloy as a Promising Dendrite‐Free Anode for Rechargeable Potassium Metal Batteries

    Get PDF
    Rechargeable potassium metal batteries are promising energy storage devices with potentially high energy density and markedly low cost. However, eliminating dendrite growth and achieving a stable electrode/electrolyte interface are the key challenges to tackle. Herein, a novel "quasi-liquid" potassium-sodium alloy (KNA) anode comprising only 3.5 wt% sodium (KNA-3.5) is reported, which exhibits outstanding electrochemical performance able to be reversibly cycled at 4 mA cm-2 for 2000 h. Moreover, it is demonstrated that adding a small amount of sodium hexafluorophosphate (NaPF6 ) into the potassium bis(fluorosulfonyl)imide electrolyte allows for the formation of the "quasi-liquid" KNA on electrode surface. Comprehensive experimental studies reveal the formation of an unusual metastable KNa2 phase during plating, which is believed to facilitate simultaneous nucleation and suppress the growth of dendrites, thereby improving the electrode's cycle lifetime. The "quasi-liquid" KNA-3.5 anode demonstrates markedly enhanced electrochemical performance in a full cell when pairing with Prussian blue analogs or sodium rhodizonate dibasic as the cathode material, compared to the pristine potassium anode. Importantly, unlike the liquid KNA reported before, the "quasi-liquid" KNA-3.5 exhibits good processability and can be readily shaped into sheet electrodes, showing substantial promise as a dendrite-free anode in rechargeable potassium metal batteries.Z.T. acknowledges the financial support of Maria Curie COFUND fellowship (Grant No. 713640). Z.L. thanks the financial support of China Scholarship Council (Grant No. 201 806 400 066). This project was partly funded by the “Baterias 2030” project through the Mobilizadore Programme by the National Innovation Agency of Portugal (Grant No. POCI-01-0247- FEDER-046109). G.Y. acknowledges the financial support from the Welch Foundation Award F-1861. The authors thank Dr. Artur Martins for his assistance in mechanical property measurement.info:eu-repo/semantics/publishedVersio

    An Empirical Study of Language Model Integration for Transducer based Speech Recognition

    Full text link
    Utilizing text-only data with an external language model (LM) in end-to-end RNN-Transducer (RNN-T) for speech recognition is challenging. Recently, a class of methods such as density ratio (DR) and ILM estimation (ILME) have been developed, outperforming the classic shallow fusion (SF) method. The basic idea behind these methods is that RNN-T posterior should first subtract the implicitly learned ILM prior, in order to integrate the external LM. While recent studies suggest that RNN-T only learns some low-order language model information, the DR method uses a well-trained ILM. We hypothesize that this setting is appropriate and may deteriorate the performance of the DR method, and propose a low-order density ratio method (LODR) by training a low-order weak ILM for DR. Extensive empirical experiments are conducted on both in-domain and cross-domain scenarios on English LibriSpeech & Tedlium-2 and Chinese WenetSpeech & AISHELL-1 datasets. It is shown that LODR consistently outperforms SF in all tasks, while performing generally close to ILME and better than DR in most tests.Comment: submitted to INTERSPEECH 202

    Comparative efficacy and pharmacological mechanism of Chinese patent medicines against anthracycline-induced cardiotoxicity: An integrated study of network meta-analysis and network pharmacology approach

    Get PDF
    BackgroundThis study aimed to evaluate the efficacy of Chinese patent medicines (CPMs) combined with dexrazoxane (DEX) against anthracycline-induced cardiotoxicity (AIC) and further explore their pharmacological mechanism by integrating the network meta-analysis (NMA) and network pharmacology approach.MethodsWe searched for clinical trials on the efficacy of DEX + CPMs for AIC until March 10, 2023 (Database: PubMed, Embase, Cochrane Library, Chinese National Knowledge Infrastructure, China Science and Technology Journal and China Online Journals). The evaluating outcomes were cardiac troponin I (cTnI) level, creatine kinase MB (CK-MB) level, left ventricular ejection fraction (LVEF) value, and electrocardiogram (ECG) abnormal rate. Subsequently, the results of NMA were further analyzed in combination with network pharmacology.ResultsWe included 14 randomized controlled trials (RCTs) and 1 retrospective cohort study (n = 1,214), containing six CPMs: Wenxinkeli (WXKL), Cinobufotalin injection (CI), Shenqifuzheng injection (SQFZ), Shenmai injection (SM), Astragalus injection (AI) and AI + CI. The NMA was implemented in Stata (16.0) using the mvmeta package. Compared with using DEX only, DEX + SM displayed the best effective for lowering cTnI level (MD = −0.44, 95%CI [−0.56, −0.33], SUCRA 93.4%) and improving LVEF value (MD = 14.64, 95%CI [9.36, 19.91], SUCRA 98.4%). DEX + SQFZ showed the most effectiveness for lowering CK-MB level (MD = −11.57, 95%CI [−15.79, −7.35], SUCRA 97.3%). And DEX + AI + CI has the highest effectiveness for alleviating ECG abnormalities (MD = −2.51, 95%CI [−4.06, −0.96], SUCRA 96.8%). So that we recommended SM + DEX, SQFZ + DEX, and DEX + AI + CI as the top three effective interventions against AIC. Then, we explored their pharmacological mechanism respectively. The CPMs' active components and AIC-related targets were screened to construct the component-target network. The potential pathways related to CPMs against AIC were determined by KEGG. For SM, we identified 118 co-targeted genes of active components and AIC, which were significantly enriched in pathways of cancer pathways, EGFR tyrosine kinase inhibitor resistance and AGE-RAGE signaling pathway in diabetic complications. For SQFZ, 41 co-targeted genes involving pathways of microRNAs in cancer, Rap1 signaling pathway, MAPK signaling pathway, and lipid and atherosclerosis. As for AI + CI, 224 co-targeted genes were obtained, and KEGG analysis showed that the calcium signaling pathway plays an important role except for the consistent pathways of SM and SQFZ in anti-AIC.ConclusionsDEX + CPMs might be positive efficacious interventions from which patients with AIC will derive benefits. DEX + SM, DEX + SQFZ, and DEX + AI + CI might be the preferred intervention for improving LVEF value, CK-MB level, and ECG abnormalities, respectively. And these CPMs play different advantages in alleviating AIC by targeting multiple biological processes

    Data-Juicer: A One-Stop Data Processing System for Large Language Models

    Full text link
    The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, diverse, and high-quality data. Despite this, existing open-source tools for LLM data processing remain limited and mostly tailored to specific datasets, with an emphasis on the reproducibility of released data over adaptability and usability, inhibiting potential applications. In response, we propose a one-stop, powerful yet flexible and user-friendly LLM data processing system named Data-Juicer. Our system offers over 50 built-in versatile operators and pluggable tools, which synergize modularity, composability, and extensibility dedicated to diverse LLM data processing needs. By incorporating visualized and automatic evaluation capabilities, Data-Juicer enables a timely feedback loop to accelerate data processing and gain data insights. To enhance usability, Data-Juicer provides out-of-the-box components for users with various backgrounds, and fruitful data recipes for LLM pre-training and post-tuning usages. Further, we employ multi-facet system optimization and seamlessly integrate Data-Juicer with both LLM and distributed computing ecosystems, to enable efficient and scalable data processing. Empirical validation of the generated data recipes reveals considerable improvements in LLaMA performance for various pre-training and post-tuning cases, demonstrating up to 7.45% relative improvement of averaged score across 16 LLM benchmarks and 16.25% higher win rate using pair-wise GPT-4 evaluation. The system's efficiency and scalability are also validated, supported by up to 88.7% reduction in single-machine processing time, 77.1% and 73.1% less memory and CPU usage respectively, and 7.91x processing acceleration when utilizing distributed computing ecosystems. Our system, data recipes, and multiple tutorial demos are released, calling for broader research centered on LLM data.Comment: Under continuous maintenance and updating; The system, refined data recipes, and demos are at https://github.com/alibaba/data-juice

    Development and validation of ferroptosis-related lncRNAs signature for hepatocellular carcinoma

    Get PDF
    Background Hepatocellular carcinoma (HCC) with high heterogeneity is one of the most frequent malignant tumors throughout the world. However, there is no research to establish a ferroptosis-related lncRNAs (FRlncRNAs) signature for the patients with HCC. Therefore, this study was designed to establish a novel FRlncRNAs signature to predict the survival of patients with HCC. Method The expression profiles of lncRNAs were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. FRlncRNAs co-expressed with ferroptosis-related genes were utilized to establish a signature. Cox regression was used to construct a novel three FRlncRNAs signature in the TCGA cohort, which was verified in the GEO validation cohort. Results Three differently expressed FRlncRNAs significantly associated with prognosis of HCC were identified, which composed a novel FRlncRNAs signature. According to the FRlncRNAs signature, the patients with HCC could be divided into low- and high-risk groups. Patients with HCC in the high-risk group displayed shorter overall survival (OS) contrasted with those in the low-risk group (P  1, P  1, P < 0.05). Meanwhile, it was also a useful tool in predicting survival among each stratum of gender, age, grade, stage, and etiology,etc. This signature was connected with immune cell infiltration (i.e., Macrophage, Myeloid dendritic cell, and Neutrophil cell, etc.) and immune checkpoint blockade targets (PD-1, CTLA-4, and TIM-3). Conclusion The three FRlncRNAs might be potential therapeutic targets for patients, and their signature could be utilized for prognostic prediction in HCC
    corecore