247 research outputs found
Optimal air and fuel-path control of a diesel engine
The work reported in this thesis explores innovative control structures and controller design for a heavy duty Caterpillar C6.6 diesel engine. The aim of the work is not only to demonstrate the optimisation of engine performance in terms of fuel consumption, NOx and soot emissions, but also to explore ways to reduce lengthy calibration time and its associated high costs. The test engine is equipped with high pressure exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). Consequently, there are two principal inputs in the air-path: EGR valve position and VGT vane position. The fuel injection system is common rail, with injectors electrically actuated and includes a multi-pulse injection mode. With two-pulse injection mode, there are as many as five control variables in the fuel-path needing to be adjusted for different engine operating conditions. [Continues.
Asteroseismic analysis of solar-mass subgiants KIC 6442183 and KIC 11137075 observed by Kepler
Asteroseismology provides a powerful way to constrain stellar parameters.
Solar-like oscillations have been observed on subgiant stars with the
\emph{Kepler\/} mission. The continuous and high-precision time series enables
us to carry out a detailed asteroseismic study for these stars. We carry out
data processing of two subgiants of spectral type G: KIC 6442183 and KIC
11137075 observed with the \emph{Kepler} mission, and perform seismic analysis
for the two evolved stars. We estimate the values of global asteroseismic
parameters: Hz and
Hz for KIC 6442183, Hz and Hz for KIC 11137075, respectively. In addition, we
extract the individual mode frequencies of the two stars. We compare stellar
models and observations, including mode frequencies and mode inertias. The mode
inertias of mixed modes, which are sensitive to the stellar interior, are used
to constrain stellar models. We define a quantity that
measures the difference between the mixed modes and the expected pure pressure
modes, which is related to the inertia ratio of mixed modes to radial modes.
Asteroseismic together with spectroscopic constraints provide the estimations
of the stellar parameters: , and Gyr for KIC
6442183, and , and Gyr for KIC 11137075. Either mode
inertias or could be used to constrain stellar models.Comment: 9 pages, 8 figures, 5 tables A&A accepte
A spatiotemporal deformation modelling method based on geographically and temporally weighted regression
The geographically and temporally weighted regression (GTWR) model is a dynamic model which considers the spatiotemporal correlation and the spatiotemporal nonstationarity. Taking into account these advantages, we proposed a spatiotemporal deformation modelling method based on GTWR. In order to further improve the modelling accuracy and efficiency and considering the application characteristics of deformation modelling, the inverse window transformation method is used to search the optimal fitting window width and furthermore the local linear estimation method is used in the fitting coefficient function. Moreover, a comprehensive model for the statistical tests method is proposed in GTWR. The results of a dam deformation modelling application show that the GTWR model can establish a unified spatiotemporal model which can represent the whole deformation trend of the dam and furthermore can predict the deformation of any point in time and space, with stronger flexibility and applicability. Finally, the GTWR model improves the overall temporal prediction accuracy by 43.6% compared to the single-point time-weighted regression (TWR) model
Discovery of two new hypervelocity stars from the LAMOST spectroscopic surveys
We report the discovery of two new unbound hypervelocity stars (HVSs) from
the LAMOST spectroscopic surveys. They are respectively a B2V type star of ~ 7
M with a Galactic rest-frame radial velocity of 502 km/s at a
Galactocentric radius of ~ 21 kpc and a B7V type star of ~ 4 M
with a Galactic rest-frame radial velocity of 408 km/s at a Galactocentric
radius of ~ 30 kpc. The origins of the two HVSs are not clear given their
currently poorly measured proper motions. However, the future data releases of
Gaia should provide proper motion measurements accurate enough to solve this
problem. The ongoing LAMOST spectroscopic surveys are expected to yield more
HVSs to form a statistical sample, providing vital constraint on understanding
the nature of HVSs and their ejection mechanisms.Comment: 5 pages, 3 figures, 1 table, accepted for publication in ApJ
Prediction of the fuel economy potential for a skutterudite thermoelectric generator in light-duty vehicle applications
© 2018 The Authors Thermoelectric generators (TEGs) have the characteristics of low maintenance, silent operation, stability, and compactness, which make them outstanding devices for waste heat recovery in light-duty vehicles. Significant strides have been made in the high temperature (300–800 °C) thermoelectric materials and recent work is beginning to translate those material improvements into TEG performance. Recently developed modules that incorporate new, competitive formulations of skutterudite form the basis for this study. Vehicular TEGs have not had real commercial applications yet and faced commercialization challenges. Simply estimating the fuel saving potential from the TEG output is not sufficient and due consideration must also be given to the system integration effects. Thus, a new approach for predicting the fuel saving potential of a vehicular TEG while also considering integration effects is developed in this paper. The prediction is based on a recently developed high temperature skutterudite thermoelectric modules [1]. Based on this method, the benefit of a skutterudite TEG is investigated by balancing the benefits with the added complexity of a TEG and improvement measures are explored. Based on two scenarios of the TEG integrated in different positions of a conventional light-duty vehicle, a semi-empirical model is developed, which includes a quasi-static vehicle model, a dynamic exhaust model, a dynamic coolant model, and a dynamic TEG model. Four integration effects: the additional mass, the power consumption of an electric circulation pump, the effect of exhaust back-pressure and the energy loss in the DC-DC converter, are studied in the semi-empirical model. The evaluation results show the TEG installation position has a significant influence on the fuel saving potential due to the higher quality of the exhaust gas. Placing the TEG closer to the exhaust manifold can increase fuel saving potential by 50%. The four integration effects taken together cause a 25% reduction of fuel saving potential. The energy loss in DC-DC convector and added weight are the main contributors to this reduction. An optimised design for the TEG installation operating under an optimised control strategy delivers a fuel consumption reduction of 4% over the constant-speed 120 km/h driving cycle
- …