1,425 research outputs found
Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials
The optical nonlocality in symmetric metal-dielectric multilayer
metamaterials is theoretically and experimentally investigated with respect to
transverse-magnetic-polarized incident light. A nonlocal effective medium
theory is derived from the transfer-matrix method to determine the nonlocal
effective permittivity depending on both the frequency and wave vector in a
symmetric metal-dielectric multilayer stack. In contrast to the local effective
medium theory, our proposed nonlocal effective medium theory can accurately
predict measured incident angle-dependent reflection spectra from a fabricated
multilayer stack and provide nonlocal dispersion relations. Moreover, the bulk
plasmon polaritons with large wave vectors supported in the multilayer stack
are also investigated with the nonlocal effective medium theory through the
analysis of the dispersion relation and eigenmode.Comment: 21 pages, 7 figure
Numerical simulation of nonoptimal dynamic equilibrium models
In this paper we present a recursive method for the computation of dynamic competitive equilibria in models with heterogeneous agents and market frictions. This method is based on a convergent operator over an expanded set of state variables. The fixed point of this operator defines the set of all Markovian equilibria. We study approximation properties of the operator as well as the convergence of the moments of simulated sample paths. We apply our numerical algorithm to two growth models, an overlapping generations economy with money, and an asset pricing model with financial frictions.Econometric models
Array-induced collective transport in the Brownian motion of coupled nonlinear oscillator systems
Brownian motion of an array of harmonically coupled particles subject to a
periodic substrate potential and driven by an external bias is investigated. In
the linear response limit (small bias), the coupling between particles may
enhance the diffusion process, depending on the competition between the
harmonic chain and the substrate potential. An analytical formula of the
diffusion rate for the single-particle case is also obtained. In the nonlinear
response regime, the moving kink may become phase-locked to its radiated phonon
waves, hence the mobility of the chain may decrease as one increases the
external force.Comment: 4 figures, to appear in Phys. Rev.
Inhomogeneous Quasi-stationary States in a Mean-field Model with Repulsive Cosine Interactions
The system of N particles moving on a circle and interacting via a global
repulsive cosine interaction is well known to display spatially inhomogeneous
structures of extraordinary stability starting from certain low energy initial
conditions. The object of this paper is to show in a detailed manner how these
structures arise and to explain their stability. By a convenient canonical
transformation we rewrite the Hamiltonian in such a way that fast and slow
variables are singled out and the canonical coordinates of a collective mode
are naturally introduced. If, initially, enough energy is put in this mode, its
decay can be extremely slow. However, both analytical arguments and numerical
simulations suggest that these structures eventually decay to the spatially
uniform equilibrium state, although this can happen on impressively long time
scales. Finally, we heuristically introduce a one-particle time dependent
Hamiltonian that well reproduces most of the observed phenomenology.Comment: to be published in J. Phys.
Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction
Superconductivity in topological materials has attracted a great deal of
interest in both electron physics and material sciences since the theoretical
predictions that Majorana fermions can be realized in topological
superconductors [1-4]. Topological superconductivity could be realized in a
type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a
conventional superconductor. Here we report observations of the proximity
effect induced giant supercurrent states in an InAs/GaSb bilayer system that is
sandwiched between two superconducting tantalum electrodes to form a
superconductor-InAs/GaSb-superconductor junction. Electron transport results
show that the supercurrent states can be preserved in a surprisingly large
temperature-magnetic field (T-H) parameter space. In addition, the evolution of
differential resistance in T and H reveals an interesting superconducting gap
structure
Trends in Elasticity and Electronic Structure of Transition-Metal Nitrides and Carbides from First Principles
The elastic properties of the -structured transition-metal nitrides and
their carbide counterparts are studied using the {\it ab initio\} density
functional perturbation theory. The linear response results of elastic
constants are in excellent agreement with those obtained from numerical
derivative methods, and are also consistent with measured data. We find the
following trends: (1) Bulk moduli and tetragonal shear moduli
, increase and lattice constants decrease
rightward or downward on the Periodic Table for the metal component or if C is
replaced by N; (2) The inequality holds for
; (3) depends strongly on the number of valence electrons per
unit cell (). From the fitted curve of as a function of , we
can predict that MoN is unstable in structure, and transition-metal
carbonitrides ( ZrCN) and di-transition-metal carbides
( HfTaC) have maximum at .Comment: 4 pages, 2 figures, submitted to PRL. 2 typos in ref. 15 were
correcte
Geometric stabilization of extended S=2 vortices in two-dimensional photonic lattices: theoretical analysis, numerical computation and experimental results
In this work, we focus our studies on the subject of nonlinear discrete
self-trapping of S=2 (doubly-charged) vortices in two-dimensional photonic
lattices, including theoretical analysis, numerical computation and
experimental demonstration. We revisit earlier findings about S=2 vortices with
a discrete model, and find that S=2 vortices extended over eight lattice sites
can indeed be stable (or only weakly unstable) under certain conditions, not
only for the cubic nonlinearity previously used, but also for a saturable
nonlinearity more relevant to our experiment with a biased photorefractive
nonlinear crystal. We then use the discrete analysis as a guide towards
numerically identifying stable (and unstable) vortex solutions in a more
realistic continuum model with a periodic potential. Finally, we present our
experimental observation of such geometrically extended S=2 vortex solitons in
optically induced lattices under both self-focusing and self-defocusing
nonlinearities, and show clearly that the S=2 vortex singularities are
preserved during nonlinear propagation
Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel-Kontorova chain
Kink dynamics of the damped Frenkel-Kontorova (discrete sine-Gordon) chain
driven by a constant external force are investigated. Resonant steplike
transitions of the average velocity occur due to the competitions between the
moving kinks and their radiated phasonlike modes. A mean-field consideration is
introduced to give a precise prediction of the resonant steps. Slip-stick
motion and spatiotemporal dynamics on those resonant steps are discussed. Our
results can be applied to studies of the fluxon dynamics of 1D
Josephson-junction arrays and ladders, dislocations, tribology and other
fields.Comment: 20 Plain Latex pages, 10 Eps figures, to appear in Phys. Rev.
- …