1,193 research outputs found

    Quantum Dynamics of Mesoscopic Driven Duffing Oscillators

    Full text link
    We investigate the nonlinear dynamics of a mesoscopic driven Duffing oscillator in a quantum regime. In terms of Wigner function, we identify the nature of state near the bifurcation point, and analyze the transient process which reveals two distinct stages of quenching and escape. The rate process in the escape stage allows us to extract the transition rate, which displays perfect scaling behavior with the driving distance to the bifurcation point. We numerically determine the scaling exponent, compare it with existing result, and propose open questions to be resolved.Comment: 4 pages, 4 figures; revised version accepted for publication in EP

    Superfluidity and effective mass of magnetoexcitons in topological insulator bilayers: Effect of inter-Landau-level Coulomb interaction

    Full text link
    The effective mass and superfluidity-normal phase transition temperature of magnetoexcitons in topological insulator bilayers are theoretically investigated. The intra-Landau-level Coulomb interaction is treated perturbatively, from which the effective magnetoexciton mass is analytically discussed. The inclusion of inter-Landau-level Coulomb interaction by more exact numerical diagonalization of the Hamiltonian brings out important modifications to magnetoexciton properties, which are specially characterized by prominent reduction in the magnetoexciton effective mass and promotion in the superfluidity-normal phase transition temperature at a wide range of external parameters.Comment: 5.6 EPL pages, 4 figure

    Fractional quantum Hall effect of topological surface states under a strong tilted magnetic field

    Full text link
    The fractional quantum Hall effect (FQHE) of topological surface-state particles under a tilted strong magnetic field is theoretically studied by using the exact diagonalization method. The Haldane's pseudopotentials for the Coulomb interaction are analytically obtained. The results show that by increasing the in-plane component of the tilted magnetic field, the FQHE state at nn=0 Landau level (LL) becomes more stable, while the stabilities of nn=±1\pm1 LLs become weaker. Moreover, we find that the excitation gaps of the ν=1/3\nu=1/3 FQHE states increase as the tilt angle is increased.Comment: 4.2 pages, 4 figure

    Quantum Corrals and Quantum Mirages on the Surface of a Topological Insulator

    Full text link
    We study quantum corrals on the surface of a topological insulator (TI). Different resonance states induced by nonmagnetic (NM), antiferromagnetic (AFM), and ferromagnetic (FM) corrals are found. Intriguingly, the spin is clearly energy-resolved in a FM corral, which can be effectively used to operate surface carrier spins of TI. We also show that an observable quantum mirage of a magnetic impurity can be projected from the occupied into the empty focus of a FM elliptic corral, while in NM and AFM corrals the mirage signal becomes negligibly weak. In addition, the modulation of the interaction between two magnetic impurities in the quantum corrals is demonstrated. These prominent effects may be measured by spin-polarized STM experiments.Comment: 5 PRB pages, 4 figure

    Multiple-trait quantitative trait locus mapping with incomplete phenotypic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional multiple-trait quantitative trait locus (QTL) mapping methods must discard cases (individuals) with incomplete phenotypic data, thereby sacrificing other phenotypic and genotypic information contained in the discarded cases. Under standard assumptions about the missing-data mechanism, it is possible to exploit these cases.</p> <p>Results</p> <p>We present an expectation-maximization (EM) algorithm, derived for recombinant inbred and F<sub>2 </sub>genetic models but extensible to any mating design, that supports conventional hypothesis tests for QTL main effect, pleiotropy, and QTL-by-environment interaction in multiple-trait analyses with missing phenotypic data. We evaluate its performance by simulations and illustrate with a real-data example.</p> <p>Conclusion</p> <p>The EM method affords improved QTL detection power and precision of QTL location and effect estimation in comparison with case deletion or imputation methods. It may be incorporated into any least-squares or likelihood-maximization QTL-mapping approach.</p

    Flexible Power Regulation and Current-limited Control of Grid-connected Inverter under Unbalanced Grid Voltage Faults

    Get PDF
    corecore