162 research outputs found

    Convex Optimization for Linear Query Processing under Approximate Differential Privacy

    Full text link
    Differential privacy enables organizations to collect accurate aggregates over sensitive data with strong, rigorous guarantees on individuals' privacy. Previous work has found that under differential privacy, computing multiple correlated aggregates as a batch, using an appropriate \emph{strategy}, may yield higher accuracy than computing each of them independently. However, finding the best strategy that maximizes result accuracy is non-trivial, as it involves solving a complex constrained optimization program that appears to be non-linear and non-convex. Hence, in the past much effort has been devoted in solving this non-convex optimization program. Existing approaches include various sophisticated heuristics and expensive numerical solutions. None of them, however, guarantees to find the optimal solution of this optimization problem. This paper points out that under (ϵ\epsilon, δ\delta)-differential privacy, the optimal solution of the above constrained optimization problem in search of a suitable strategy can be found, rather surprisingly, by solving a simple and elegant convex optimization program. Then, we propose an efficient algorithm based on Newton's method, which we prove to always converge to the optimal solution with linear global convergence rate and quadratic local convergence rate. Empirical evaluations demonstrate the accuracy and efficiency of the proposed solution.Comment: to appear in ACM SIGKDD 201

    Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy

    Full text link
    Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result, such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results, while satisfying the privacy guarantees. Previous work, notably \cite{LHR+10}, has suggested that with an appropriate strategy, processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering them individually. However, to our knowledge there is currently no practical solution to find such a strategy for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive methods) or require prohibitively expensive computations for even moderately large domains. Motivated by this, we propose low-rank mechanism (LRM), the first practical differentially private technique for answering batch linear queries with high accuracy. LRM works for both exact (i.e., ϵ\epsilon-) and approximate (i.e., (ϵ\epsilon, δ\delta)-) differential privacy definitions. We derive the utility guarantees of LRM, and provide guidance on how to set the privacy parameters given the user's utility expectation. Extensive experiments using real data demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.Comment: ACM Transactions on Database Systems (ACM TODS). arXiv admin note: text overlap with arXiv:1212.230

    Low-Rank Mechanism: Optimizing Batch Queries under Differential Privacy

    Full text link
    Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result, such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results, while satisfying the privacy guarantees. Previous work, notably the matrix mechanism, has suggested that processing a batch of correlated queries as a whole can potentially achieve considerable accuracy gains, compared to answering them individually. However, as we point out in this paper, the matrix mechanism is mainly of theoretical interest; in particular, several inherent problems in its design limit its accuracy in practice, which almost never exceeds that of naive methods. In fact, we are not aware of any existing solution that can effectively optimize a query batch under differential privacy. Motivated by this, we propose the Low-Rank Mechanism (LRM), the first practical differentially private technique for answering batch queries with high accuracy, based on a low rank approximation of the workload matrix. We prove that the accuracy provided by LRM is close to the theoretical lower bound for any mechanism to answer a batch of queries under differential privacy. Extensive experiments using real data demonstrate that LRM consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.Comment: VLDB201

    Co-sensitization and cross-reactivity of Blomia tropicalis with two Dermatophagoides species in Guangzhou, China

    Get PDF
    Around 85.50% of patients were sensitized to Der p, 85.37% of patients were sensitized to Der f, and 71.54% of patients were sensitized to Blo t. Further, 70.14% of patients were co-sensitized to Blo t, Der p, and Der f, and only seven patients were sensitized solely to Blo t. With increasing sIgE levels for Blo t, the positive rates of severe-level (class 5-6) co-sensitization to Der p or Der f significantly increased. Blo t was moderately associated with Der p and Der f, with correlation coefficients of 0.6998 and 0.6782, respectively. Der p and Der f inhibited IgE binding to Blo t more strongly than Blo t inhibited IgE binding to Der p or Der f in the patient groups CBlo t  < CDer p and CBlo t  < CDer f .Open Project of State Key Laboratory of Respiratory Disease [SKLRD-OP-201803, SKLRD-OP-201809]; Science and Technology Innovation Committee Project of Guangzhou [201831802]; Bureau of traditional Chinese Medicine Scientific Research Project of Guangdong [20192048]; National Natural Science Foundation of China [81601394, 81802076, 81871736]Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Comparison of live microalgae and Spray-dried algae powder effects on growth, digestive and antioxidant capacity of juvenile pearl oyster <em>Pinctada maxima</em>

    Get PDF
    The pearl production through the pearl oyster *Pinctada maxima's* culture has developed slowly over the past decades due to over-fishing of wild populations and mass mortality at juvenile stages. Indoor farming is an alternative mode for *P. maxima* juvenile cultivation to improve survival rates. In pursuit of optimizing healthy management under the indoor farming mode, the objective of this investigation was to compare the growth performance, digestion, and antioxidant capacity of juveniles fed with different microalgae-based diets (live *Isochrysis zhanjiangensis,* *Platymonas subcordiformis*, *Chaetoceros muelleri*; and spray-dried *I. zhanjiangensis*, *P. subcordiformis*, *C. muelleri* powder). The juvenile survival rates fed with spray-dried microalgae powder (except *C. muelleri* powder) were not significantly different from those fed on live microalgae. However, the growth performance of juveniles fed with spray-dried microalgae powder could have been better than the live one. The digestive enzymatic activities were consistent with growth performance, and diets affected the antioxidant capacity. The spray-dried *I. zhanjiangensis* powder can serve as a substitute for live microalga in *P. maxima* juvenile indoor farming and is recommended under controlled conditions. The findings from this study would provide essential data to improve health management for *P. maxima* juveniles in indoor farming conditions

    Autologous cord blood mononuclear cell infusion for the prevention of bronchopulmonary dysplasia in very preterm monozygotic twins: A study protocol for a randomized, placebo-controlled, double-blinded multicenter trial

    Get PDF
    BackgroundPreterm-associated complications remain the main cause of neonatal death. Survivors face the challenges of short- and long-term complications. Among all complications, bronchopulmonary dysplasia (BPD) remains the first important cause of neonatal mortality and morbidity. Current treatment does not address this main preterm complication. Cord blood is regarded as a convenient source of stem cells. The paracrine bioactive factors of stem cells contribute to tissue repair and immune modulation. Our clinical studies and those of others have shown that cord blood cell infusion is both safe and possibly effective in the prevention and treatment of BPD. The therapeutic use of cord blood has emerged as a promising therapy. However, the genetic heterogeneity between control and intervention groups may reduce the comparability especially among small sample trials. The purpose of this study protocol is to investigate the effects of autologous cord blood mononuclear cell (ACBMNC) infusion on the prevention of BPD in very preterm monozygotic twins of less than 32 gestation weeks.MethodsIn this prospective, randomized, placebo-controlled, double-blinded multicenter clinical trial, 60 pairs of monozygotic twin preterm neonates of less than 32 weeks admitted to the Neonatal Intensive Care Unit are randomly assigned to receive intravenous ACBMNC infusion (targeted at 5 × 107 cells/kg) or placebo (normal saline) within 24 h after birth in a 1:1 ratio. The primary outcome will be survival without BPD at 36 weeks of postmenstrual age. The secondary outcomes will include the mortality rate, BPD severity, other common preterm complication rates, respiratory support duration, length and cost of hospitalization, and long-term respiratory and neurodevelopmental outcomes during a 2-year follow-up. Furthermore, we will perform single-cell RNA sequencing for cord blood cells and blood cells 3–10 days after intervention and detect whether reactive oxygen species and inflammatory cytokines are present.ConclusionThis will be the first randomized, placebo-controlled, double-blinded trial to evaluate the efficacy of ACBMNC infusion to prevent BPD in monozygotic twin premature infants and investigate the underlying protective mechanisms. The results of this trial will provide valuable clinical evidence for translational application of cord blood cell therapy in very preterm infants.Trial registration: ClinicalTrials.gov, NCT05087498, registered 10/09/2021, https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S000BAD7&amp;selectaction=Edit&amp;uid=U0002PLA&amp;ts=2&amp;cx=qvyylv
    corecore