37 research outputs found

    Prognostic Assessment of the Viability of Hydrothermal Liquefaction as a Post-Resource Recovery Step after Enhanced Biomethane Generation Using Co-Digestion Technologies

    No full text
    In line with global efforts at encouraging paradigm transitions from waste disposal to resource recovery, the anaerobic co-digestion of substrates of wet hydrolyzed meat processing dissolved air flotation sludge and meat processing stock yard waste was investigated in the present study. It was demonstrated that the co-digestion of these substrates leads to the introduction of co-digestion synergizing effects. This study assessed biomethane potentials of the co-digestion of different substrate mixtures, with the preferred substrate mixture composed of stockyard waste and wet hydrolyzed meat processing dissolved air flotation sludge, present in a 4:1 ratio on a volatile solid mass basis. This co-digestion substrate mix ratio presented an experimentally determined cumulative biomethane potential of 264.13 mL/gVSadded (volatile solid). The experimentally determined cumulative biomethane potential was greater than the predicted maximum cumulative biomethane potential of 148.4 mL/gVSadded, anticipated from a similar substrate mixture if synergizing effects were non-existent. The viability of integrating a downstream hydrothermal liquefaction processing of the digestate residue from the co-digestion process, for enhanced resource recovery, was also initially assessed. Assessments were undertaken via the theoretical based estimation of the yields of useful products of biocrude and biochar obtainable from the hydrothermal liquefaction processing of the digestate residue. The environmental sustainability of the proposed integrated system of anaerobic digestion and hydrothermal liquefaction technologies was also initially assessed. The opportunity for secondary resource recovery from the digestate, via the employment of the hydrothermal liquefaction process and the dependence of the environmental sustainability of the integrated system on the moisture content of the digestate, were established. It is anticipated that the results of this study will constitute an invaluable basis for the future large-scale implementation of the proposed integrated system for enhanced value extraction from organic waste streams

    Techno-Economic Assessment of a Scaled-Up Meat Waste Biorefinery System: A Simulation Study

    No full text
    While exports from the meat industry in New Zealand constitute a valuable source of foreign exchange, the meat industry is also responsible for the generation of large masses of waste streams. These meat processing waste streams are largely biologically unstable and are capable of leading to unfavourable environmental outcomes if not properly managed. To enable the effective management of the meat processing waste streams, a value-recovery based strategy, for the complete valorisation of the meat processing waste biomass, is proposed. In the present study therefore, a biorefinery system that integrates the biomass conversion technologies of hydrolysis, esterification, anaerobic digestion and hydrothermal liquefaction has been modelled, simulated and optimized for enhanced environmental performance and economic performance. It was determined that an initial positive correlation between the mass feed rate of the waste to the biorefinery system and its environmental performance exists. However, beyond an optimal total mass feed rate of the waste stream there is a deterioration of the environmental performance of the biorefinery system. It was also determined that economies of scale ensure that any improvement in the economic performance of the biorefinery system with increasing total mass feed rate of the waste stream, is sustained. The present study established that the optimized meat waste biorefinery system facilitated a reduction in the unit production costs of the value-added products of biodiesel, biochar and biocrude compared the literature-obtained unit production costs of the respective aforementioned products when generated from stand-alone systems. The unit production cost of biogas was however shown to be comparable to the literature-obtained unit production cost of biogas. Finally, the present study showed that the optimized meat processing waste biorefinery could achieve enhanced economic performance while simultaneously maintaining favourable environmental sustainability

    Catalyst-Free Biodiesel Production Methods: A Comparative Technical and Environmental Evaluation

    No full text
    In response to existing global focus on improved biodiesel production methods via highly efficient catalyst-free high temperature and high pressure technologies, this study considered the comparative study of catalyst-free technologies for biodiesel production as an important research area. In this study, therefore, catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification and catalyst-free one step supercritical transesterification processes for biodiesel production have been evaluated via undertaking straight forward comparative energetic and environmental assessments. Energetic comparisons were undertaken after heat integration was performed since energy reduction has favourable effects on the environmental performance of chemical processes. The study confirmed that both processes are capable of producing biodiesel of high purity with catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification characterised by a greater energy cost than catalyst-free one step supercritical transesterification processes for an equivalent biodiesel productivity potential. It was demonstrated that a one-step supercritical transesterification for biodiesel production presents an energetically more favourable catalyst-free biodiesel production pathway compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. The one-step supercritical transesterification for biodiesel production was also shown to present an improved environmental performance compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. This is because of the higher potential environment impact calculated for the integrated subcritical lipid hydrolysis and supercritical esterification compared to the potential environment impact calculated for the supercritical transesterification process, when all material and energy flows are considered. Finally the major contributors to the environmental outcomes of both processes were also clearly elucidated

    Use of Ultrasound and Co-solvents to improve the in-situ Transesterification of Microalgae Biomass

    Get PDF
    AbstractThe conversion of microalgae lipids to biodiesel has been increasingly investigated, with the use of the in-situ transesterification method reported in the literature to lead to improved alkyl ester conversions for this feedstock compared with the use of the conventional two staged oil extraction and transesterification process. To further improve the feasibility of the use of the in-situ method, this paper investigates modifications to reduce the large process methanol requirements, and potentially improve the oil to methyl esters conversion and biodiesel yields. The results obtained showed that use of ultrasound agitation for the in-situ process, as well as combining this stirring regime with co-solvent use (n-pentane and diethyl ether) significantly improved the Chlorella oil to methyl esters conversion with reduced reacting methanol volumes

    The Role of Rheological Additives on Fresh and Hardened Properties of Cemented Paste Backfill

    No full text
    Cemented paste backfill (CPB) has become a significant structural material in most mines across the world. In this study, the effects of chemical rheological additives including viscosity modifying agent (i.e., polyacrylamide) and polycarboxylate superplasticizer (PCE) on fresh and hardened properties of CPB with different water-to-solid (W/S) ratios and water-to-cement (W/C) ratios were investigated. The microstructure of CPB specimens was also characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and backscattered electron image (SEM-BSE). The obtained results indicate that PAM (polyacrylamide) dosage and W/S are the most significant parameters influencing the workability of fresh CPB mixtures. For the hardened CPB specimens, the decreasing W/S ratio leads to higher flexural and compressive strength values and lower dry shrinkage strains. The interfacial transition zone (ITZ) between the cement matrix and the tailings sand was also observed to be narrower, with fewer micro cracks and capillary pores. Meanwhile, the existence of PAM decreased the number of hydration products and retarded the hydration reaction. Overall, the CPBs with high W/C ratios (i.e., 1.0 and 1.2), low W/S ratios (i.e., 0.3), and moderate amounts of rheological additives (i.e., 0.05% PAM and 1.0% PCE) have excellent fresh and hardened properties. The findings of this study contribute to better optimization of CPB mixtures in backfill construction, bringing benefits of low costs and low environmental impacts

    A review of synthesis methods, properties and use of hydroxyapatite as a substitute of bone

    No full text
    In recent years, a significant achievement has been made in developing biomaterials, in particular the design of bioceramics, from natural sources for various biomedical applications. In this review, we discuss the fundamentals of structure, function and characteristics of human bone, its calcium and phosphate composition, role and importance of bioceramics for bone repairing or regeneration. This review also outlines various isolation techniques and the application of novel marine-derived hydroxyapatite (HA) and tri-calcium phosphate (TCP) for biocomposites engineering, and their potentials for bone substitute and bone regeneration. © (2015) Trans Tech Publications, Switzerland.info:eu-repo/semantics/publishe

    Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering.

    No full text
    In this study, bio-scaffolds have been developed using irradiated chitosan from different sources - squid pen (RS) and crab shell (RC) - with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) at a chitosan/HA/β-TCP ratio of 50/30/20. The bio-scaffolds were prepared at two different freezing temperature (-20°C and -80°C) followed by lyophilisation. To enhance the mechanical properties, the bio-scaffolds were cross-linked using sodium tripolyphosphate (TPP) followed by lyophilisation. The composition and morphology of the bio-scaffolds were characterized using XRD, SEM, TEM and μ-CT. The pore size of the porous scaffolds ranged from 90 to 220μm and the scaffolds had 70-80% porosity. The scaffolds had a water uptake ratio of more than 10, and a controlled biodegradation in the range of 30-40%. These results suggest that the physical and biological properties of chitosan-based bio-scaffolds can be a promising biomaterial for bone-tissue regeneration.info:eu-repo/semantics/publishe

    Investigation of Novel Composite Materials for Thermochemical Heat Storage Systems

    No full text
    Increasing energy prices make space heating more expensive every year in The Organisation for Economic Co-operation and Development (OECD) member countries. Thermochemical heat storage systems (THSS) can be used to reduce residential energy consumption for space heating and to control humidity. Utilizing compressed thermochemical pellets as heat storage materials is a way to increase volumetric energy storage capacity and to improve the performance of the THSS. In this work, expanded natural graphite (ENG), activated carbon (AC), strontium bromide, and magnesium sulphate were mixed in different mass ratios and compressed under applied pressures in a range of 0.77 to 5.2 kN⋅mm−2 to form composite pellets with a diameter of 12 and 25 mm, respectively, and a thickness from 1.5 to 25 mm. These pellets were characterized using thermogravimetric analysis and differential scanning calorimetry. Cyclic tests of hydration at 20 °C and dehydration at 85 °C were conducted to investigate changes in the surface morphology and the heat and mass transfer characteristics of the composite pellets. The permeability and thermal conductivity of the composite pellets were also measured. It was found that the structural stability of the pellets was enhanced by increasing the compression pressure. Utilizing AC and ENG in the composite mixture enhanced the porosity, thermal conductivity, and the permeability of the pellets

    Injectable gel from squid pen chitosan for bone-tissue engineering applications

    No full text
    info:eu-repo/semantics/publishe
    corecore