192 research outputs found
The portrait of eikonal instability in Lovelock theories
Perturbations and eikonal instabilities of black holes and branes in the
Einstein-Gauss-Bonnet theory and its Lovelock generalization were considered in
the literature for several particular cases, where the asymptotic conditions
(flat, dS, AdS), the number of spacetime dimensions , non-vanishing coupling
constants (, , etc.) and other parameters have
been chosen in a specific way. Here we give a comprehensive analysis of the
eikonal instabilities of black holes and branes for the \emph{most general}
Lovelock theory, not limited by any of the above cases. Although the part of
the stability analysis is performed here purely analytically and formulated in
terms of the inequalities for the black hole parameters, the most general case
is treated numerically and the accurate regions of instabilities are presented.
The shared Mathematica(R) code allows the reader to construct the regions of
eikonal instability for any desired values of the parameters.Comment: 21 pages, 9 figures, supplementary Mathematica(R) noteboo
Quasinormal modes of black holes: from astrophysics to string theory
Perturbations of black holes, initially considered in the context of possible
observations of astrophysical effects, have been studied for the past ten years
in string theory, brane-world models and quantum gravity. Through the famous
gauge/gravity duality, proper oscillations of perturbed black holes, called
quasinormal modes (QNMs), allow for the description of the hydrodynamic regime
in the dual finite temperature field theory at strong coupling, which can be
used to predict the behavior of quark-gluon plasmas in the nonperturbative
regime. On the other hand, the brane-world scenarios assume the existence of
extra dimensions in nature, so that multidimensional black holes can be formed
in a laboratory experiment. All this stimulated active research in the field of
perturbations of higher-dimensional black holes and branes during recent years.
In this review recent achievements on various aspects of black hole
perturbations are discussed such as decoupling of variables in the perturbation
equations, quasinormal modes (with special emphasis on various numerical and
analytical methods of calculations), late-time tails, gravitational stability,
AdS/CFT interpretation of quasinormal modes, and holographic superconductors.
We also touch on state-of-the-art observational possibilities for detecting
quasinormal modes of black holes.Comment: 49 pages, 16 figures, to be published in Reviews of Modern Physics.
The style and reference list are slightly different from the journal versio
Quasinormal modes of Gauss-Bonnet-AdS black holes: towards holographic description of finite coupling
Here we shall show that there is no other instability for the
Einstein-Gauss-Bonnet-anti-de Sitter (AdS) black holes, than the eikonal one
and consider the features of the quasinormal spectrum in the stability sector
in detail. The obtained quasinormal spectrum consists from the two essentially
different types of modes: perturbative and non-perturbative in the Gauss-Bonnet
coupling . The sound and hydrodynamic modes of the perturbative branch
can be expressed through their Schwazrschild-AdS limits by adding a linear in
correction to the damping rates: , where is the
AdS radius. The non-perturbative branch of modes consists of purely imaginary
modes, whose damping rates unboundedly increase when goes to zero.
When the black hole radius is much larger than the anti-de Sitter radius ,
the regime of the black hole with planar horizon (black brane) is reproduced.
If the Gauss-Bonnet coupling (or used in holography ) is
not small enough, then the black holes and branes suffer from the instability,
so that the holographic interpretation of perturbation of such black holes
becomes questionable, as, for example, the claimed viscosity bound violation in
the higher derivative gravity. For example, black brane is unstable at
and has anomalously large relaxation time when approaching
the threshold of instability.Comment: 22 pages, JHEP styl
Long life of Gauss-Bonnet corrected black holes
Dictated by the string theory and various higher dimensional scenarios, black
holes in -dimensional space-times must have higher curvature corrections.
The first and dominant term is quadratic in curvature, and called the
Gauss-Bonnet (GB) term. We shall show that although the Gauss-Bonnet correction
changes black hole's geometry only softly, the emission of gravitons is
suppressed by many orders even at quite small values of the GB coupling. The
huge suppression of the graviton emission is due to the multiplication of the
two effects: the quick cooling of the black hole when one turns on the GB
coupling and the exponential decreasing of the grey-body factor of the tensor
type of gravitons at small and moderate energies. At higher the tensor
gravitons emission is dominant, so that the overall lifetime of black holes
with Gauss-Bonnet corrections is many orders larger than was expected. This
effect should be relevant for the future experiments at the Large Hadron
Collider (LHC). Keywords: Hawking radiation, black hole evaporation.Comment: 13 pages, 14 figure
Stability of higher dimensional Reissner-Nordstrom-anti-de Sitter black holes
We investigate stability of the D-dimensional
Reissner-Nordstrom-anti-de-Sitter metrics as solutions of the Einstein-Maxwell
equations. We have shown that asymptotically anti-de Sitter black holes are
dynamically stable for all values of charge and anti-de Sitter radius in
dimensional space-times. This does not contradict to dynamical
instability of RN-AdS black holes found by Gubser in gauged
supergravity, because the latter instability comes from the tachyon mode of the
scalar field, coupled to the system. Asymptotically AdS black holes are known
to be thermodynamically unstable for some region of parameters, yet, as we have
shown here, they are stable against gravitational perturbations.Comment: 9 pages, 2 tables, a lot of figures, RevTe
- …
